Date: January 4th 2007

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

DAILY REPORT # 4271

PERIOD COVERED: UT January 03, 2007 (DOY 003)

OBSERVATIONS SCHEDULED

ACS/HRC 11041

ACS CCDs daily monitor

This program consists of a set of basic tests to monitor, the read noise, the development of hot pixels and test for any source of noise in ACS CCD detectors The files, biases and dark will be used to create reference files for science calibration This programme will be for the entire lifetime of ACS For cycle 15 the program will cover 18 months 12 1 06->05 31 08 and it has been divied into three different proposal each covering six months The three proposals are 11041-11042-11043

ACS/HRC/WFPC2/NIC3 10842

A Cepheid Distance to the Coma Cluster

We propose to use the Advanced Camera for Surveys to search for Cepheid variables in two spiral galaxies in the core of the Coma cluster A direct application of the canonical primary distance indicator at 100 Mpc will measure the far-field Hubble constant free of many of the systematic uncertainties which beset current determinations relying on secondary indicators Establishing the far-field H_o with Cepheids will provide one of the strongest links in the extragalactic distance scale and will directly calibrate the fiducial fundamental plane of elliptical galaxies in Coma With ACS/HRC, S/N=5 to 10 or better can be reached for Cepheids with periods of 40d to 70d at mean light in 5 orbits with the F606W filter if H_o=72 km/s/Mpc Efficient detection and phasing can be done with twelve epochs optimally spaced for periods of 40-70d

ACS/WFC 10592

An ACS Survey of a Complete Sample of Luminous Infrared Galaxies in the Local Universe

At luminosities above 10^11 4 L_sun, the space density of far-infrared selected galaxies exceeds that of optically selected galaxies These `luminous infrared galaxies' {LIRGs} are primarily interacting or merging disk galaxies undergoing enhanced star formation and Active Galactic Nuclei {AGN} activity, possibly triggered as the objects transform into massive S0 and elliptical merger remnants We propose ACS/WFC imaging of a complete sample of 88 L_IR > 10^11 4 L_sun luminous infrared galaxies in the IRAS Revised Bright Galaxy Sample {RBGS: i e , 60 micron flux density > 5 24 Jy} This sample is ideal not only in its completeness and sample size, but also in the proximity and brightness of the galaxies The superb sensitivity, resolution, and field of view of ACS/WFC on HST enables a unique opportunity to study the detailed structure of galaxies that sample all stages of the merger process Imaging will be done with the F439W and F814W filters {B and I-band} to examine as a function of both luminosity and merger state {i} the evidence at optical wavelengths of star formation and AGN activity and the manner in which instabilities {bars and bridges} in the galaxies may funnel material to these active regions, {ii} the relationship between star formation and AGN activity, and {iii} the structural properties {AGN, bulge, and disk components} and fundamental parameters {effective radius and surface brightness} of LIRGs and their similarity with putative evolutionary byproducts {elliptical, S0 and classical AGN host galaxies} This HST survey will also bridge the wavelength gap between a Spitzer imaging survey {covering seven bands in the 3 6-160 micron range} and a GALEX UV imaging survey of these galaxies, but will resolve complexes of star clusters and multiple nuclei at resolutions well beyond the capabilities of either Spitzer or GALEX The combined datasets will result in the most comprehensive multiwavelength study of interacting and merging galaxies to date

ACS/WFC 10813

MgII Absorption Line Systems: Galaxy Halos or the Metal-Enriched IGM?

MgII QSO absorption lines detected in the spectra of background QSOs were used over a decade ago to infer that all redshift z > 0 2 galaxies have gaseous halos of radius ~ 60 kpc The actual size of the halo was believed to be proportional to the luminosity of the galaxy However, these conclusions are now much harder to understand in light of the results from numerical simulations which show how gas evolves in the universe These models predict that gas and galaxies merely share the same filamentary structures defined by dark matter If these models are correct, how are MgII systems and galaxies really related? We can better understand the distribution of absorbing gas if we FIRST select galaxies close to QSO sightlines and THEN search for MgII absorption at the redshift of the intervening galaxies This is the antithesis of the original experiments which sought to find absorbing galaxies based on known MgII systems The frequency with which we detect MgII lines from randomly selected galaxies should enable us to better understand if absorption arises in the halos of individual galaxies, or if MgII merely arises in the same IGM that galaxies inhabit We have used ground-based telescopes to indentify twenty z = 0 31-0 55 galaxies within 14-51 kpc of a g < 20 QSO, and to search for MgII absorption at the galaxies' redshifts Surprisingly, we find that only 50% of our QSOs show MgII absorption In this proposal, we seek multi-color ACS images of twelve of the fields to i} correlate the incidence of MgII with galaxy morphology; ii} determine if absorption {or lack thereof} is related to galaxy disks or halos; iii} search for signs of galaxy interactions which may explain the large cross-sections of MgII systems; and iv} look for faint interloping galaxies closer to the line of sight than the one we identified An important component of the program is to observe each field in the SDSS g-, r- and i-bands, to permit an estimate of the photometric redshift of any objects which lie closer to the QSO sightline than the identified galaxy, and which might actually be responsible for the absorption

ACS/WFC 10876

SL2S: The Strong Lensing Legacy Survey

Strong Gravitational Lensing is an invaluable tool to constrain the absolute mass distribution of structures irrespective of their light distribution Strong Lensing has successfully been applied to single galaxies lensing quasars into multiple images, and to massive clusters lensing background sources into giant arcs More recently, the Sloan Lens ACS Survey also found numerous examples of isolated, yet massive ellipticals lensing background galaxies into Einstein rings We have started the Strong Lensing Legacy Survey {SL2S} looking for strong lenses in the 170 sq degree CFHT-Legacy Survey, using dedicated automated search procedures, optimized for detection of arcs and Einstein rings Thanks to the unsurpassed combined depth, area and image quality of the CFHT-LS, we uncovered a new population of lenses: the intermediate mass halo and sub-halo lenses This new population effectively bridges the gap between single galaxies and massive clusters Here, we propose to obtain SNAPSHOT ACS images of the 50 first strong lens candidates with Einstein radii 2"

ACS/WFC/WFPC2 10890

Morphologies of the Most Extreme High-Redshift Mid-IR-Luminous Galaxies

The formative phase of the most massive galaxies may be extremely luminous, characterized by intense star- and AGN-formation Till now, few such galaxies have been unambiguously identified at high redshift, restricting us to the study of low-redshift ultraluminous infrared galaxies as possible analogs We have recently discovered a sample of objects which may indeed represent this early phase in galaxy formation, and are undertaking an extensive multiwavelength study of this population These objects are bright at mid-IR wavelengths {F[24um]>0 8mJy}, but deep ground based imaging suggests extremely faint {and in some cases extended} optical counterparts {R~24-27} Deep K-band images show barely resolved galaxies Mid-infrared spectroscopy with Spitzer/IRS reveals that they have redshifts z ~ 2-2 5, suggesting bolometric luminosities ~10^{13-14}Lsun! We propose to obtain deep ACS F814W and NIC2 F160W images of these sources and their environs in order to determine kpc-scale morphologies and surface photometry for these galaxies The proposed observations will help us determine whether these extreme objects are merging systems, massive obscured starbursts {with obscuration on kpc scales!} or very reddened {locally obscured} AGN hosted by intrinsically low-luminosity galaxies

NIC1/NIC2/NIC3 8794

NICMOS Post-SAA calibration - CR Persistence Part 5

A new procedure proposed to alleviate the CR-persistence problem of NICMOS Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA The darks will be obtained in parallel in all three NICMOS Cameras The POST-SAA darks will be non-standard reference files available to users with a USEAFTER date/time mark The keyword 'USEAFTER=date/time' will also be added to the header of each POST-SAA DARK frame The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need Both the raw and processed images will be archived as POST-SAA DARKSs Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors

WFPC2 10915

ACS Nearby Galaxy Survey

Existing HST observations of nearby galaxies comprise a sparse and highly non-uniform archive, making comprehensive comparative studies among galaxies essentially impossible We propose to secure HST's lasting impact on the study of nearby galaxies by undertaking a systematic, complete, and carefully crafted imaging survey of ALL galaxies in the Local Universe outside the Local Group The resulting images will allow unprecedented measurements of: {1} the star formation history {SFH} of a >100 Mpc^3 volume of the Universe with a time resolution of Delta[log{t}]=0 25; {2} correlations between spatially resolved SFHs and environment; {3} the structure and properties of thick disks and stellar halos; and {4} the color distributions, sizes, and specific frequencies of globular and disk clusters as a function of galaxy mass and environment To reach these goals, we will use a combination of wide-field tiling and pointed deep imaging to obtain uniform data on all 72 galaxies within a volume-limited sample extending to ~3 5 Mpc, with an extension to the M81 group For each galaxy, the wide-field imaging will cover out to ~1 5 times the optical radius and will reach photometric depths of at least 2 magnitudes below the tip of the red giant branch throughout the limits of the survey volume One additional deep pointing per galaxy will reach SNR~10 for red clump stars, sufficient to recover the ancient SFH from the color-magnitude diagram This proposal will produce photometric information for ~100 million stars {comparable to the number in the SDSS survey} and uniform multi-color images of half a square degree of sky The resulting archive will establish the fundamental optical database for nearby galaxies, in preparation for the shift of high-resolution imaging to the near-infrared

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated )

HSTARS: (None)

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

                    SCHEDULED      SUCCESSFUL

FGS GSacq 05 05 FGS REacq 10 10 OBAD with Maneuver 30 30

SIGNIFICANT EVENTS: (None)



The following information is a reminder of your current mailing list subscription:

You are subscribed to the following list: [list_name]

using the following email: BULK_EMAIL

You may automatically unsubscribe from this list at any time by visiting the following URL:

http://www aus-city com/cgi-bin/dada/mail cgi/u/[list]/

If the above URL is inoperable, make sure that you have copied the entire address Some mail readers will wrap a long URL and thus break this automatic unsubscribe mechanism

You may also change your subscription by visiting this list's main screen:

http://www aus-city com/cgi-bin/dada/mail cgi/list/[list]

If you're still having trouble, please contact the list owner at:

<mailto:list
admin@aus-city
com>

The following physical address is associated with this mailing list:

http://www aus-city com

Forward to a Friend
 
  • This mailing list is a public mailing list - anyone may join or leave, at any time.
  • This mailing list is announce-only.

HST Status Report list

Privacy Policy:

Private list