Notice:
Due to the conversion of some ACS WFC or HRC observations into
WFPC2,
or NICMOS observations after the loss of ACS CCD science
capability
in January, there may be an occasional discrepancy between a
proposal's
listed (and correct) instrument usage and the abstract that
follows
it.
HUBBLE
SPACE TELESCOPE - Continuing to collect World Class Science
DAILY
REPORT # 4428
PERIOD
COVERED: UT August 16, 2007 (DOY 228)
OBSERVATIONS
SCHEDULED
ACS/SBC
WFPC2 11175
UV
Imaging to Determine the Location of Residual Star Formation in
Galaxies
Recently Arrived on the Red Sequence
We
have identified a sample of low-redshift {z = 0.04 - 0.10} galaxies
that
are candidates for recent arrival on the red sequence. They have
red
optical colors indicative of old stellar populations, but blue
UV-optical
colors that could indicate the presence of a small quantity
of
continuing or very recent star formation. However, their spectra lack
the
emission lines that characterize star-forming galaxies. We propose
to
use ACS/SBC to obtain high- resolution imaging of the UV flux in
these
galaxies, in order to determine the spatial distribution of the
last
episode of star formation. WFPC2 imaging will provide B, V, and I
photometry
to measure the main stellar light distribution of the galaxy
for
comparison with the UV imaging, as well as to measure color
gradients
and the distribution of interstellar dust. This detailed
morphological
information will allow us to investigate the hypothesis
that
these galaxies have recently stopped forming stars and to compare
the
observed distribution of the last star formation with predictions
for
several different mechanisms that may quench star formation in
galaxies.
NIC1/NIC2
11190
Probing
Uranus' Vertical Aerosol Structure at Equinox
After
a decade of quiescence following the Voyager flybys, Uranus'
atmosphere
has been exhibiting increasing activity approaching equinox
that
suggests a short timescale, dynamical, response in addition to a
long
timescale, radiative, response to the seasonal change of
hemispheric
heating. We propose to investigate this dichotomy by
measuring
Uranus' vertical aerosol structure over the entire surface,
including
both poles, at equinox when the forcing insolation is
hemispherically
symmetric, requiring that the sub-Earth latitude be less
than
a degree. Only at equinox {every 42 years} can the entire surface
of
the planet be viewed {over a full rotation} and mapped with the same
viewing
geometry. We will probe the morphology of the vertical haze
structure
using NICMOS narrow band filters beyond 1 micron to isolate
different
altitude regimes between the stratosphere and cloud deck and
investigate
its change since Cycle 7. We will use two complementary
approaches:
First, imaging will be done using medium- and narrow-band
filters
first to locate the dynamically-produced discrete cloud
features,
then to probe their vertical structure and morphology. The
methane
absorption bands are stronger in the proposed near-IR {1 to 2.5
microns}
than at shorter wavelengths, and the strong H2 pressure-induced
absorption
from 2.1-2.4 microns contributes to the peak opacity. This
enhances
the visibility of transient, spatially isolated features and
allows
their structure to be probed to higher altitudes; namely, to the
upper
troposphere where they would be evidence of convective overshoot,
a
dynamical manifestation that would support strong seasonally- induced
static
instability. In addition to probing the structure with filter
photometry,
we will measure longitudinal limb profiles to probe the
vertical
background haze distribution vs latitude. HST/NICMOS is
required
because it avoids telluric water absorption and OH+O2 emission,
and
has a stable, well-characterized PSF, essential for limb studies and
extracting
the vertical structure of fine features crossing the disk.
The
proposed observations would complement the ground-based Uranus
equinox
campaign.
NIC1/NIC2/NIC3
8794
NICMOS Post-SAA calibration - CR Persistence Part 5
A
new procedure proposed to alleviate the CR-persistence problem of
NICMOS.
Dark frames will be obtained immediately upon exiting the SAA
contour
23, and every time a NICMOS exposure is scheduled within 50
minutes
of coming out of the SAA. The darks will be obtained in parallel
in
all three NICMOS Cameras. The POST-SAA darks will be non- standard
reference
files available to users with a USEAFTER date/time mark. The
keyword
'USEAFTER=date/time' will also be added to the header of each
POST-SAA
DARK frame. The keyword must be populated with the time, in
addition
to the date, because HST crosses the SAA ~8 times per day so
each
POST-SAA DARK will need to have the appropriate time specified, for
users
to identify the ones they need. Both the raw and processed images
will
be archived as POST-SAA DARKs. Generally we expect that all NICMOS
science/calibration
observations started within 50 minutes of leaving an
SAA
will need such maps to remove the CR persistence from the science
images.
Each observation will need its own CRMAP, as different SAA
passages
leave different imprints on the NICMOS detectors.
NIC2
10802
SHOES-Supernovae,
HO, for the Equation of State of Dark energy
The
present uncertainty in the value of the Hubble constant {resulting
in
an uncertainty in Omega_M} and the paucity of Type Ia
supernovae at
redshifts
exceeding 1 are now the leading obstacles to determining the
nature
of dark energy. We propose a single, integrated set of
observations
for Cycle 15 that will provide a 40% improvement in
constraints
on dark energy. This program will observe known Cepheids in
six
reliable hosts of Type Ia supernovae with NICMOS, reducing the
uncertainty
in H_0 by a factor of two because of the smaller dispersion
along
the instability strip, the diminished extinction, and the weaker
metallicity
dependence in the infrared. In parallel with ACS, at the
same
time the NICMOS observations are underway, we will discover and
follow
a sample of Type Ia supernovae at z > 1. Together, these
measurements,
along with prior constraints from WMAP, will provide a
great
improvement in HST's ability to distinguish between a static,
cosmological
constant and dynamical dark energy. The Hubble Space
Telescope
is the only instrument in the world that can make these IR
measurements
of Cepheids beyond the Local Group, and it is the only
telescope
in the world that can be used to find and follow supernovae at
z
> 1. Our program exploits both of these unique capabilities of HST to
learn
more about one of the greatest mysteries in science.
WFPC2
11030
WFPC2
WF4 Temperature Reduction #3
In
the fall of 2005, a serious anomaly was found in images from the WF4
CCD
in WFPC2. The WF4 CCD bias level appeared to have become unstable,
resulting
in sporadic images with either low or zero bias level. The
severity
and frequency of the problem was rapidly increasing, making it
possible
that WF4 would soon become unusable if no work-around were
found.
Examination of bias levels during periods with frequent WFPC2
images
showed low and zero bias episodes every 4 to 6 hours. This
periodicity
is driven by cycling of the WFPC2 Replacement Heater, with
the
bias anomalies occurring at the temperature peaks. The other three
CCDs
{PC1, WF2, and WF3} appear to be unaffected and continue to operate
properly.
Lowering the Replacement Heater temperature set points by a
few
degrees C effectively eliminates the WF4 anomaly. On 9 January 2006,
the
upper set point of the WFPC2 Replacement Heater was reduced from
14.9C
to 12.2C. On 20 February 2006, the upper set point was reduced
from
12.2C to 11.3C, and the lower set point was reduced from 10.9C to
10.0C.
These changes restored the WF4 CCD bias level; however, the bias
level
has begun to trend downwards again, mimicking its behavior in late
2004
and early 2005. A third temperature reduction is planned for March
2007.
We will reduce the upper set point of the heater from 11.3C to
10.4C
and the lower set point from 10.0C to 9.1C. The observations
described
in this proposal will test the performance of WFPC2 before and
after
this temperature reduction. Additional temperature reductions may
be
needed in the future, depending on the performance of WF4. Orbits:
internal
26, external 1
WFPC2
11128
Time
Scales Of Bulge Formation In Nearby Galaxies
Traditionally,
bulges are thought to fit well into galaxy formation
models
of hierarchical merging. However, it is now becoming well
established
that many bulges formed through internal, secular evolution
of
the disk rather than through mergers. We call these objects
pseudobulges.
Much is still unknown about pseudobulges, the most
pressing
questions being: How, exactly, do they build up their mass? How
long
does it take? And, how many exist? We are after an answer to these
questions.
If pseudobulges form and evolve over longer periods than the
time
between mergers, then a significant population of pseudobulges is
hard
to explain within current galaxy formation theories. A pseudobulge
indicates
that a galaxy has most likely not undergone a major merger
since
the formation of the disk. The ages of pseudobulges give us an
estimate
for the time scale of this quiescent evolution. We propose to
use
24 orbits of HST time to complete UBVIH imaging on a sample of 33
nearby
galaxies that we have observed with Spitzer in the mid-IR. These
data
will be used to measure spatially resolved stellar population
parameters
{mean stellar age, metallicity, and star formation history};
comparing
ages to star formation rates allows us to accurately constrain
the
time scale of pseudobulge formation. Our sample of bulges includes
both
pseudo- and classical bulges, and evenly samples barred and
unbarred
galaxies. Most of our sample is imaged, 13 have complete UBVIH
coverage;
we merely ask to complete missing observations so that we may
construct
a uniform sample for studying bulge formation. We also wish to
compare
the stellar population parameters to a variety of bulge and
global
galaxy properties including star formation rates, dynamics,
internal
bulge morphology, structure from bulge-disk decompositions, and
gas
content. Much of this data set is already or is being assembled.
This
will allow us to derive methods of pseudobulge identification that
can
be used to accurately count pseudobulges in large surveys. Aside
from
our own science goals, we will present this broad set of data to
the
community. Thus, we waive proprietary periods for all observations.
WFPC2
11201
Systemic
and Internal motions of the Magellanic Clouds: Third Epoch
Images
In
Cycles 11 and 13 we obtained two epochs of ACS/HRC data for fields in
the
Magellanic Clouds centered on background quasars. We used these data
to
determine the proper motions of the LMC and SMC to better than 5% and
15%
respectively. These are by far the best determinations of the proper
motions
of these two galaxies. The results have a number of unexpected
implications
for the Milky Way-LMC-SMC system. The implied
three-dimensional
velocities are larger than previously believed, and
are
not much less than the escape velocity in a standard 10^12 solar
mass
Milky Way dark halo. Orbit calculations suggest the Clouds may not
be
bound to the Milky Way or may just be on their first passage, both of
which
would be unexpected in view of traditional interpretations of the
Magellanic
Stream. Alternatively, the Milky Way dark halo may be a
factor
of two more massive than previously believed, which would be
surprising
in view of other observational constraints. Also, the
relative
velocity between the LMC and SMC is larger than expected,
leaving
open the possibility that the Clouds may not be bound to each
other.
To further verify and refine our results we now request an epoch
of
WFPC2/PC data for the fields centered on 40 quasars that have at
least
one epoch of ACS imaging. We request execution in snapshot mode,
as
in our previous programs, to ensure the most efficient use of HST
resources.
A third epoch of data of these fields will provide crucial
information
to verify that there are no residual systematic effects in
our
previous measurements. More importantly, it will increase the time
baseline
from 2 to 5 yrs and will increase the number of fields with at
least
two epochs of data. This will reduce our uncertainties
correspondingly,
so that we can better address whether the Clouds are
indeed
bound to each other and to the Milky Way. It will also allow us
to
constrain the internal motions of various populations within the
Clouds,
and will allow us to determine a distance to the LMC using
rotational
parallax.
FLIGHT
OPERATIONS SUMMARY:
Significant
Spacecraft Anomalies: (The following are preliminary reports
of
potential non-nominal performance that will be investigated.)
HSTARS:
(None)
COMPLETED
OPS REQUEST: (None)
COMPLETED
OPS NOTES: (None)
SCHEDULED
SUCCESSFUL
FGS
GSacq
09
09
FGS
REacq
06
06
OBAD
with Maneuver
30
30
SIGNIFICANT
EVENTS: (None)