HUBBLE SPACE TELESCOPE - Continuing to collect World Class
Science
DAILY REPORT #4765
PERIOD COVERED: 5am January 5 - 5am January 6, 2009 (DOY
005/1000z-006/1000z)
OBSERVATIONS SCHEDULED
FGS 11704
The Ages of Globular Clusters and the Population II
Distance Scale
Globular clusters are the oldest objects in the universe
whose age can
be accurately determined. The dominant error in globular
cluster age
determinations is the uncertain Population II distance
scale. We propose
to use FGS 1r to obtain parallaxes with an accuracy of 0.2
milliarcsecond for 9 main sequence stars with [Fe/H] <
-1.5. This will
determine the absolute magnitude of these stars with
accuracies of 0.04
to 0.06mag. This data will be used to determine the
distance to 24
metal-poor globular clusters using main sequence fitting.
These
distances (with errors of 0.05 mag) will be used to
determine the ages
of globular clusters using the luminosity of the subgiant
branch as an
age indicator. This will yield absolute ages with an
accuracy 5%, about
a factor of two improvement over current estimates.
Coupled with
existing parallaxes for more metal-rich stars, we will be
able to
accurately determine the age for globular clusters over a
wide range of
metallicities in order to study the early formation
history of the Milky
Way and provide an independent estimate of the age of the
universe.
The Hipparcos database contains only 1 star with [Fe/H]
< -1.4 and an
absolute magnitude error less than 0.18 mag which is
suitable for use in
main sequence fitting. Previous attempts at main sequence
fitting to
metal-poor globular clusters have had to rely on
theoretical
calibrations of the color of the main sequence. Our HST
parallax program
will remove this source of possible systematic error and
yield distances
to metal-poor globular clusters which are significantly
more accurate
than possible with the current parallax data. The HST
parallax data will
have errors which are 10 times smaller than the current
parallax data.
Using the HST parallaxes, we will obtain main sequence
fitting distances
to 11 globular clusters which contain over 500 RR Lyrae
stars. This will
allow us to calibrate the absolute magnitude of RR Lyrae
stars, a
commonly used Population II distance indicator.
ACS/SBC 11236
Did Rare, Large Escape-Fraction Galaxies Reionize the
Universe?
Lyman continuum photons produced in massive starbursts may
have played a
dominant role in the reionization of the Universe.
Starbursts are
important contributors to the ionizing metagalactic
background at lower
redshifts as well. However, their contribution to the
background depends
upon the fraction of ionizing radiation that escapes from
the intrinsic
opacity of galaxies below the Lyman limit. Current surveys
suggest that
the escape fraction is close to zero in most galaxies,
even among young
starbursts, but is large in 15-25% of them. Non-uniform
escape fractions
are expected as a result of violent events creating clear
paths in small
parts of galaxies. The number of galaxies observed with
high escape
fraction will result from the combination of the intrinsic
number with
clear lines of sight and their orientation with respect to
the observer.
We propose to measure the fraction of escaping Lyman
continuum radiation
in a large sample (47) of z~0.7 starbursts in the COSMOS
field. These
compact UV-luminous galaxies are good analogs to high
redshift LBGs.
Using the SBC/PR130L we can quickly (1-4 orbits) detect
relative escape
fractions (f_LC/f_1500) of 25% or more. This will be the
first
measurement of the escape fraction in sources between z=1
and the local
universe. We expect ~10 detections. Stacking will set
limits of <4% on
the relative escape fraction in the rest. We will
correlate the LC
detections with the properties of the galaxies. By
targeting z~0.7 in COSMOS, we will have tremendous
ancillary information
on those sources. A non-detection in all sources would be
significant
(99% confidence). This would imply that QSOs provide the
overwhelming
majority of ionizing radiation at z<1, requiring
substantial evolution
in the processes within Lyman break galaxies which allow
large escape
fractions at high redshift.
WFPC2 11302
WFPC2 CYCLE 16 Standard Darks - Part III
This dark calibration program obtains dark frames every
week in order to
provide data for the ongoing calibration of the CCD dark
current rate,
and to monitor and characterize the evolution of hot
pixels. Over an
extended period these data will also provide a monitor of
radiation
damage to the CCDs.
WFPC2 11793
WFPC2 Cycle 16 Internal Monitor
This calibration proposal is the Cycle 15 routine internal
monitor for
WFPC2, to be run weekly to monitor the health of the
cameras. A variety
of internal exposures are obtained in order to provide a
monitor of the
integrity of the CCD camera electronics in both bays (both
gain 7 and
gain 15 -- to test stability of gains and bias levels), a
test for
quantum efficiency in the CCDs, and a monitor for possible
buildup of
contaminants on the CCD windows. These also provide raw data
for
generating annual super-bias reference files for the
calibration
pipeline.
WFPC2 11966
The Recent Star Formation History of SINGS Galaxies
The Spitzer Legacy project SINGS provided a unique view of
the current
state of star formation and dust in a sample of galaxies
of all Hubble
types. This multi-wavelength view allowed the team to
create current
star formation diagnostics that are independent of the
dust content and
increased our understanding of the dust in galaxies. Even
so, using the
SINGS data alone we can only make rough estimates of the
recent star
formation history of these galaxies. The lack of high
resolution
observations (especially U-band and H-alpha) means that it
is impossible
to estimate the ages of young clusters. In addition, the
low resolution
of the Spitzer and ground-based observations means that
what appear to
be individual Spitzer sources can actually be composed of
many
individual clusters with varying ages. We need to know the
ages, star
formation histories, and extinction of these individual
clusters to
understand how these clusters form and age and thus
influence the
evolution of the galaxy. In this proposal we address this
missing area
of SINGS by obtaining high-resolution WFPC2 UBVI &
H-alpha observations
to not only accurately locate and determine the ages of
the young
stellar clusters in the actively star forming SINGS
galaxies but to also
address a variety of other scientific issues. Over 500 HST
orbits and
500 hours of Spitzter observing time have been dedicated
to observations
of the SINGS sample. But the HST observations have not
been systematic.
By adding a relatively small fraction of this time for
these requested
observations, we will greatly enhance the legacy value of
the SINGS
observations by creating a uniform high resolution
multi-wavelength HST
archive that matches the quality of the lower resolution
SINGS archive.
WFPC2 11967
WFPC2 Imaging of the Lockman Hole
In order to understand galaxy evolution and constrain
theoretical
models, we require both multiwavelength photometry (to
robustly
determine physical parameters such as star formation rates
and stellar
masses) and detailed morphological information. Galaxy
morphology
encodes crucial information about galaxy formation history
and the
physical processes that trigger star formation and AGN
activity, and
high-resolution imaging for large samples of galaxies is
currently only
obtainable with HST. The Lockman Hole has been the target
of extensive
multi-wavelength observations from the X-ray to the radio,
and will be
the target of the deepest wide-area blankfield thermal IR
observations
with Herschel, but currently lacks comprehensive HST
imaging. We propose
to obtain WFPC2 imaging of ~500 arcmin2 of the central
region of the
Lockman Hole in F606W and F814W, to a depth of V606~26.8
and I814~26.
This imaging is crucial in order to characterize the
sources detected at
other wavelengths.
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are
preliminary reports
of potential non-nominal performance that will be
investigated.)
HSTARS:
11630 - REAcq(2,3,3) scheduled at 006/00:24:55z Failed to
RGA HOLD at 006/0027:44z.
Observation affected WFPC 37 Proposal ID#11967
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED
SUCCESSFUL
FGS
GSacq
07
07
FGS
REacq
07
06
OBAD with Maneuver
28
28
SIGNIFICANT EVENTS: (None)