HUBBLE
SPACE TELESCOPE - Continuing to Collect World Class Science
DAILY
REPORT #4954
PERIOD
COVERED: 5am October 19 - 5am October 20, 2009 (DOY292/09:00z-293/09:00z)
OBSERVATIONS
SCHEDULED
ACS/WFC3
11879
CCD
Daily Monitor (Part 1)
This
program comprises basic tests for measuring the read noise and dark
current
of the ACS WFC and for tracking the growth of hot pixels. The
recorded
frames are used to create bias and dark reference images for
science
data reduction and calibration. This program will be executed
four
days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To
facilitate
scheduling, this program is split into three proposals. This
proposal
covers 352 orbits (22 weeks) from 31 August 2009 to 31 January
2010.
COS/FUV
11895
FUV
Detector Dark Monitor
The
purpose of this proposal is to monitor the FUV detector dark rate by
taking
long science exposures without illuminating the detector. The
detector
dark rate and spatial distribution of counts will be compared
to
pre-launch and SMOV data in order to verify the nominal operation of
the
detector. Variations of count rate as a function of orbital position
will
be analyzed to find dependence of dark rate on proximity to the
SAA.
Dependence of dark rate as function of time will also be tracked.
COS/NUV
11894
NUV
Detector Dark Monitor
The
purpose of this proposal is to measure the NUV detector dark rate by
taking
long science exposures with no light on the detector. The
detector
dark rate and spatial distribution of counts will be compared
to
pre-launch and SMOV data in order to verify the nominal operation of
the
detector. Variations of count rate as a function of orbital position
will
be analyzed to find dependence of dark rate on proximity to the
SAA.
Dependence of dark rate as function of time will also be tracked.
NIC
11410
NICMOS
Aperture Locations
The
position of NICMOS apertures in the HST focal plane is measured in
the
V2-V3 plane.
NIC
11416
NICMOS
Parallel Thermal Background
Characterize
the stability of the HST+NCS+Instrument thermal emission as
seen
by NICMOS on secular scales. The data will be obtained using NIC3
and
the F222M filter and will run throughout the SMOV4 activities as a
pure
parallel program.
NIC
11417
NICMOS
Detector Read Noise and Dark Current
The
NICMOS detector characteristics will be monitored during the entire
extent
of the SMOV4 through a set of dark exposures. This will also
allow
a determination of the detector temperature from bias
measurements.
The data should be obtained in SAA-free orbits,
approximately
every 24 hours. In addition, the detector read noise and
the
detector shading profiles will be measured once a week.
NIC1/NIC2/NIC3
11820
NICMOS
Post-SAA Calibration - CR Persistence Part 7
Internals
for CR persistence
NIC2/WFC3/IR
11548
Infrared
Imaging of Protostars in the Orion A Cloud: The Role of
Environment
in Star Formation
We
propose NICMOS and WFC3/IR observations of a sample of 252 protostars
identified
in the Orion A cloud with the Spitzer Space Telescope. These
observations
will image the scattered light escaping the protostellar
envelopes,
providing information on the shapes of outflow cavities, the
inclinations
of the protostars, and the overall morphologies of the
envelopes.
In addition, we ask for Spitzer time to obtain 55-95 micron
spectra
of 75 of the protostars. Combining these new data with existing
3.6
to 70 micron photometry and forthcoming 5-40 micron spectra measured
with
the Spitzer Space Telescope, we will determine the physical
properties
of the protostars such as envelope density, luminosity,
infall
rate, and outflow cavity opening angle. By examining how these
properties
vary with stellar density (i.e. clusters vs. groups vs.
isolation)
and the properties of the surrounding molecular cloud; we can
directly
measure how the surrounding environment influences protostellar
evolution,
and consequently, the formation of stars and planetary
systems.
Ultimately, this data will guide the development of a theory of
protostellar
evolution.
STIS/CCD
11844
CCD
Dark Monitor Part 1
The
purpose of this proposal is to monitor the darks for the STIS CCD.
STIS/CCD
11846
CCD
Bias Monitor-Part 1
The
purpose of this proposal is to monitor the bias in the 1x1, 1x2,
2x1,
and 2x2 bin settings at gain=1, and 1x1 at gain = 4, to build up
high-S/N
superbiases and track the evolution of hot columns.
STIS/CCD
11852
STIS
CCD Spectroscopic Flats C17
The
purpose of this proposal is to obtain pixel-to-pixel lamp flat
fields
for the STIS CCD in spectroscopic mode.
STIS/CCD/MA1
11737
The
Distance Dependence of the Interstellar N/O Abundance Ratio: A Gould
Belt
Influence?
The
degree of elemental abundance homogeneity in the interstellar medium
is
a function of the enrichment and mixing processes that govern
galactic
chemical evolution. Observations of young stars and the
interstellar
gas within ~500 pc of the Sun have revealed a local ISM
that
is so well-mixed it is having an impact on ideas regarding the
formation
of extrasolar planets. However, the situation just beyond the
local
ISM is not so clear. Sensitive UV absorption line measurements
have
recently revealed a pattern of inhomogeneities in the interstellar
O,
N, and Kr gas-phase abundances at distances of ~500 pc and beyond
that
appear nucleosynthetic in origin rather than due to dust depletion.
In
particular, based on a sample of 13 sightlines, Knauth et al. (2006)
have
found that the nearby stars (d < 500 pc) exhibit a mean
interstellar
N/O abundance ratio that is significantly higher (0.18 dex)
than
that toward the more distant stars. Interestingly, all of their
sightlines
lie in the sky vicinity of the Gould Belt of OB associations,
molecular
clouds, and diffuse gas encircling the Sun at a distance of
~400
pc. Is it possible that mixing processes have not yet smoothed out
the
recent ISM enrichment by massive stars in the young Belt region? By
measuring
the interstellar N/O ratios in a strategic new sample of
sightlines
with STIS, we propose to test the apparent N/O homogeneity
inside
the Gould Belt and determine if the apparent decline in the N/O
ratio
with distance is robust and associated with the Belt region.
STIS/MA1/MA2
11857
STIS
Cycle 17 MAMA Dark Monitor
This
proposal monitors the behavior of the dark current in each of the
MAMA
detectors.
The
basic monitor takes two 1380s ACCUM darks each week with each
detector.
However, starting Oct 5, pairs are only included for weeks
that
the LRP has external MAMA observations planned. The weekly pairs of
exposures
for each detector are linked so that they are taken at
opposite
ends of the same SAA free interval. This pairing of exposures
will
make it easier to separate long and short term temporal variability
from
temperature dependent changes.
For
both detectors, additional blocks of exposures are taken once every
six
months. These are groups of five 1314s FUV-MAMA Time-Tag darks or
five
3x315s NUV ACCUM darks distributed over a single SAA-free interval.
This
will give more information on the brightness of the FUV MAMA dark
current
as a function of the amount of time that the HV has been on, and
for
the NUV MAMA will give a better measure of the short term
temperature
dependence.
WFC3/IR
11108
Near
Infrared Observations of a Sample of z~6.5-6.7 Galaxies
The
majority of the most distant galaxies discovered to date have been
found
by strong Lyman alpha emission at red optical wavelengths. An
accurate
estimate of the star formation rates for these objects requires
a
measurement of the line-free UV continuum, which must be taken at
infrared
wavelengths. Here we propose to obtain imaging with WFC3 in the
F140W
filter for a sample of 9 Lyman alpha galaxies with redshifts z~6.5
up
to z=6.740 from a complete, flux- limited widefield narrowband and
multi-color
survey conducted on the 8-m Subaru Telescope. This program
will
investigate galaxy morphologies and star formation for a uniform
sample
of the highest redshift galaxies now known.
WFC3/IR
11202
The
Structure of Early-type Galaxies: 0.1-100 Effective Radii
The
structure, formation and evolution of early-type galaxies is still
largely
an open problem in cosmology: how does the Universe evolve from
large
linear scales dominated by dark matter to the highly non-linear
scales
of galaxies, where baryons and dark matter both play important,
interacting,
roles? To understand the complex physical processes
involved
in their formation scenario, and why they have the tight
scaling
relations that we observe today (e.g. the Fundamental Plane), it
is
critically important not only to understand their stellar structure,
but
also their dark-matter distribution from the smallest to the largest
scales.
Over the last three years the SLACS collaboration has developed
a
toolbox to tackle these issues in a unique and encompassing way by
combining
new non-parametric strong lensing techniques, stellar
dynamics,
and most recently weak gravitational lensing, with
high-quality
Hubble Space Telescope imaging and VLT/Keck spectroscopic
data
of early-type lens systems. This allows us to break degeneracies
that
are inherent to each of these techniques separately and probe the
mass
structure of early-type galaxies from 0.1 to 100 effective radii.
The
large dynamic range to which lensing is sensitive allows us both to
probe
the clumpy substructure of these galaxies, as well as their
low-density
outer haloes. These methods have convincingly been
demonstrated,
by our team, using smaller pilot-samples of SLACS lens
systems
with HST data. In this proposal, we request observing time with
WFC3
and NICMOS to observe 53 strong lens systems from SLACS, to obtain
complete
multi-color imaging for each system. This would bring the total
number
of SLACS lens systems to 87 with completed HST imaging and
effectively
doubles the known number of galaxy-scale strong lenses. The
deep
HST images enable us to fully exploit our new techniques, beat down
low-number
statistics, and probe the structure and evolution of early-
type
galaxies, not only with a uniform data-set an order of magnitude
larger
than what is available now, but also with a fully-coherent and
self-consistent
methodological approach!
WFC3/UV
11906
WFC3
UVIS CCD Gain
The
absolute gain of each quadrant of the WFC3 UVIS detector will be
measured
for the nominal detector readout configuration and at the
on-orbit
operating temperature.
WFC3/UVIS
11707
Detecting
Isolated Black Holes through Astrometric Microlensing
This
proposal aims to make the first detection of isolated stellar-mass
black
holes (BHs) in the Milky Way, and to determine their masses. Until
now,
the only directly measured BH masses have come from radial-velocity
measurements
of X-ray binaries. Our proposed method uses the astrometric
shifts
that occur when a galactic-bulge microlensing event is caused by
a
BH lens. Out of the hundreds of bulge microlensing events found
annually
by the OGLE and MOA surveys, a few are found to have very long
durations
(>200 days). It is generally believed that the majority of
these
long-duration events are caused by lenses that are isolated BHs.
To
test this hypothesis, we will carry out high-precision astrometry of
5
long-duration events, using the ACS/HRC camera. The expected
astrometric
signal from a BH lens is >1.4 mas, at least 7 times the
demonstrated
astrometric precision attainable with the HRC.
This
proposal will thus potentially lead to the first unambiguous
detection
of isolated stellar-mass BHs, and the first direct mass
measurement
for isolated stellar-mass BHs through any technique.
Detection
of several BHs will provide information on the frequency of
BHs
in the galaxy, with implications for the slope of the IMF at high
masses,
the minimum mass of progenitors that produce BHs, and
constraints
on theoretical models of BH formation.
WFC3/UVIS
11905
WFC3
UVIS CCD Daily Monitor
The
behavior of the WFC3 UVIS CCD will be monitored daily with a set of
full-frame,
four-amp bias and dark frames. A smaller set of 2Kx4K
subarray
biases are acquired at less frequent intervals throughout the
cycle
to support subarray science observations. The internals from this
proposal,
along with those from the anneal procedure (Proposal 11909),
will
be used to generate the necessary superbias and superdark reference
files
for the calibration pipeline (CDBS).
FLIGHT
OPERATIONS SUMMARY:
Significant
Spacecraft Anomalies: (The following are preliminary reports
of
potential non-nominal performance that will be investigated.)
HSTARS:
(None)
COMPLETED
OPS REQUEST: (None)
COMPLETED
OPS NOTES: (None)
SCHEDULED
SUCCESSFUL
FGS
GSAcq
11
11
FGS
REAcq
04
04
OBAD
with Maneuver
06
06
SIGNIFICANT
EVENTS: (None)