HUBBLE
SPACE TELESCOPE - Continuing to Collect World Class Science
DAILY
REPORT #5017
PERIOD
COVERED: 5am January 21 - 5am January 22, 2010 (DOY 021/10:00z-022/10:00z)
OBSERVATIONS
SCHEDULED
ACS/WFC3
11833
Monitoring
M31 for BHXNe
During
A01-8 we found ~20 Black Hole X-ray Novae (BHXNe) in M31 using
Chandra,
and with HST follow-up have estimated orbital periods for 8 of
these.
Observations are underway with HST to attempt to estimate
additional
periods. We propose to continue this program concentrating
our
scarce HST resources on a single transient which exceeds 1e38 erg/s.
Only
uninterrupted monitoring can yield the duty cycles and long-term
light
curves of BHXNe (and other variables) in M31. Our GO+GTO programs
will
have accumulated 790ks (ACIS+HRC) near the M31 bulge by the end of
AO9,
and total Chandra exposure on M31 is now 940ks. By continuing our
monitoring
program through AO12 we will reach ~950ks on the bulge and
>1Msec
total Chandra M31 exposure.
ACS/WFC3
11882
CCD
Hot Pixel Annealing
All
the data for this program is acquired using internal targets (lamps)
only,
so all of the exposures should be taken during Earth occultation
time
(but not during SAA passages). This program emulates the ACS
pre-flight
ground calibration and post launch SMOV testing (program
8948),
so that results from each epoch can be directly compared.
Extended
Pixel Edge Response (EPER) and First Pixel Response (FPR) data
will
be obtained over a range of signal levels for the Wide Field
Channel
(WFC). The High Resolution Channel (HRC) visits have been
removed
since it could not be repaired during SM4.
STIS/CCD
11844
CCD
Dark Monitor Part 1
The
purpose of this proposal is to monitor the darks for the STIS CCD.
STIS/CCD
11846
CCD
Bias Monitor-Part 1
The
purpose of this proposal is to monitor the bias in the 1x1, 1x2,
2x1,
and 2x2 bin settings at gain=1, and 1x1 at gain = 4, to build up
high-S/N
superbiases and track the evolution of hot columns.
STIS/CCD/MA1/MA2
11569
Probing
the Atomic and Molecular Inventory of a Beta-Pic Analog, the
Young,
Edge-On Debris Disk of HD32297
Edge-on,
optically thin, debris disks provide unique opportunities to
probe
physical properties of the disk itself. Using the host star as the
background
source, trace atomic and molecular disk species can be
detected
in absorption. Redfield (2007) found that the recently
discovered
edge-on system, HD32297, has the strongest NaI absorption
feature
of any known debris disk, 5 times the level observed toward beta
Pic,
the canonical edge-on debris disk. Roberge et al. (2006) compiled
the
only comprehensive chemical inventory of a debris disk, using beta
Pic,
and found that carbon was surprisingly overabundant, which has
important
implications for the physical structure and support of a
stable
gas disk. What is severely lacking are comparison observations to
determine
if such an abundance pattern is typical of debris disk
systems.
HD32297 represents the best opportunity to make such a
comparative
study and perform a comprehensive gas inventory of a debris
disk,
due to its high NaI column density. The UV is critical for this
work
due to the large number of strong transitions (almost 50 ions and
molecules
are accessible) that are located in, and often only in, the
UV.
These observations will provide a much needed comparison dataset for
addressing
the gas chemistry of debris disk systems that are at the
critical
stage, near the end of planet formation, and in the process of
clearing
their interplanetary environments.
STIS/MA1/MA2
11857
STIS
Cycle 17 MAMA Dark Monitor
This
proposal monitors the behavior of the dark current in each of the
MAMA
detectors.
The
basic monitor takes two 1380s ACCUM darks each week with each
detector.
However, starting Oct 5, pairs are only included for weeks
that
the LRP has external MAMA observations planned. The weekly pairs of
exposures
for each detector are linked so that they are taken at
opposite
ends of the same SAA free interval. This pairing of exposures
will
make it easier to separate long and short term temporal variability
from
temperature dependent changes.
For
both detectors, additional blocks of exposures are taken once every
six
months. These are groups of five 1314s FUV-MAMA Time-Tag darks or
five
3x315s NUV ACCUM darks distributed over a single SAA-free interval.
This
will give more information on the brightness of the FUV MAMA dark
current
as a function of the amount of time that the HV has been on, and
for
the NUV MAMA will give a better measure of the short term
temperature
dependence.
WFC3/ACS/IR
11677
Is
47 Tuc Young? Measuring its White Dwarf Cooling Age and Completing a
Hubble
Legacy
With
this proposal we will firmly establish the age of 47 Tuc from its
cooling
white dwarfs. 47 Tuc is the nearest and least reddened of the
metal-rich
disk globular clusters. It is also the template used for
studying
the giant branches of nearby resolved galaxies. In addition,
the
age sensitive magnitude spread between the main sequence turnoff and
horizontal
branch is identical for 47 Tuc, two bulge globular clusters
and
the bulge field population. A precise relative age constraint for 47
Tuc,
compared to the halo clusters M4 and NGC 6397, both of which we
recently
dated via white dwarf cooling, would therefore constrain when
the
bulge formed relative to the old halo globular clusters. Of
particular
interest is that with the higher quality ACS data on NGC
6397,
we are now capable with the technique of white dwarf cooling of
determining
ages to an accuracy of +/-0.4 Gyrs at the 95% confidence
level.
Ages derived from the cluster turnoff are not currently capable
of
reaching this precision. The important role that 47 Tuc plays in
galaxy
formation studies, and as the metal-rich template for the
globular
clusters, makes the case for a white dwarf cooling age for this
metal-rich
cluster compelling.
Several
recent analyses have suggested that 47 Tuc is more than 2 Gyrs
younger
than the Galactic halo. Others have suggested an age similar to
that
of the most metal poor globular clusters. The current situation is
clearly
uncertain and obviously a new approach to age dating this
important
cluster is required.
With
the observations of 47 Tuc, this project will complete a legacy for
HST.
It will be the third globular cluster observed for white dwarf
cooling;
the three covering almost the full metallicity range of the
cluster
system. Unless JWST has its proposed bluer filters (700 and 900
nm)
this science will not be possible perhaps for decades until a large
optical
telescope is again in space. Ages for globular clusters from the
main
sequence turnoff are less precise than those from white dwarf
cooling
making the science with the current proposal truly urgent.
WFC3/IR
11202
The
Structure of Early-type Galaxies: 0.1-100 Effective Radii
The
structure, formation and evolution of early-type galaxies is still
largely
an open problem in cosmology: how does the Universe evolve from
large
linear scales dominated by dark matter to the highly non-linear
scales
of galaxies, where baryons and dark matter both play important,
interacting,
roles? To understand the complex physical processes
involved
in their formation scenario, and why they have the tight
scaling
relations that we observe today (e.g. the Fundamental Plane), it
is
critically important not only to understand their stellar structure,
but
also their dark- matter distribution from the smallest to the
largest
scales. Over the last three years the SLACS collaboration has
developed
a toolbox to tackle these issues in a unique and encompassing
way
by combining new non-parametric strong lensing techniques, stellar
dynamics,
and most recently weak gravitational lensing, with
high-quality
Hubble Space Telescope imaging and VLT/Keck spectroscopic
data
of early-type lens systems. This allows us to break degeneracies
that
are inherent to each of these techniques separately and probe the
mass
structure of early-type galaxies from 0.1 to 100 effective radii.
The
large dynamic range to which lensing is sensitive allows us both to
probe
the clumpy substructure of these galaxies, as well as their
low-density
outer haloes. These methods have convincingly been
demonstrated,
by our team, using smaller pilot-samples of SLACS lens
systems
with HST data. In this proposal, we request observing time with
WFC3
and NICMOS to observe 53 strong lens systems from SLACS, to obtain
complete
multi-color imaging for each system. This would bring the total
number
of SLACS lens systems to 87 with completed HST imaging and
effectively
doubles the known number of galaxy-scale strong lenses. The
deep
HST images enable us to fully exploit our new techniques, beat down
low-
number statistics, and probe the structure and evolution of
early-type
galaxies, not only with a uniform data-set an order of
magnitude
larger than what is available now, but also with a fully-
coherent
and self-consistent methodological approach!
WFC3/IR
11694
Mapping
the Lnteraction Between High-Redshift Galaxies and the
Lntergalactic
Environment
With
the commissioning of the high-throughput large-area camera WFC3/IR,
it
is possible for the first time to undertake an efficient survey of
the
rest-frame optical morphologies of galaxies at the peak epoch of
star
formation in the universe. We therefore propose deep WFC3/IR
imaging
of over 320 spectroscopically confirmed galaxies between
redshift
1.6 < z < 3.4 in well-studied fields which lie along the line
of
sight to bright background QSOs. The spectra of these bright QSOs
probe
the IGM in the vicinity of each of the foreground galaxies along
the
line of sight, providing detailed information on the physical state
of
the gas at large galactocentric radii. In combination with our
densely
sampled UV/IR spectroscopy, stellar population models, and
kinematic
data in these fields, WFC3/IR imaging data will permit us to
construct
a comprehensive picture of the structure, dynamics, and star
formation
properties of a large population of galaxies in the early
universe
and their effect upon their cosmological environment.
WFC3/IR
11915
IR
Internal Flat Fields
This
program is the same as 11433 (SMOV) and depends on the completion
of
the IR initial alignment (Program 11425). This version contains three
instances
of 37 internal orbits: to be scheduled early, middle, and near
the
end of Cycle 17, in order to use the entire 110-orbit allocation.
In
this test, we will study the stability and structure of the IR
channel
flat field images through all filter elements in the WFC3-IR
channel.
Flats will be monitored, i.e. to capture any temporal trends in
the
flat fields and delta flats produced. High signal observations will
provide
a map of the pixel-to- pixel flat field structure, as well as
identify
the positions of any dust particles.
WFC3/IR
11916
IR
Intrapixel Sensitivity
In
order to characterize the periodic intrapixel sensitivity variation
(IPSV)
of the WFC3 IR array, we will analyze full-frame IR observations
of
a star field (in the Omega Centauri globular cluster) in three
bandpasses
(F110W, F160W, and F098M) dithered on an NxN grid. The
measurements
will be used to quantify systematic trends in aperture
photometry
of stars with pixel phase, defined as (x mod 1, y mod 1),
where
(x, y) is the center of the stellar image at subpixel precision.
Grid
sizes of N=2 and N=3 are justifed in Additional Comments of
Proposal
Description.
WFC3/UVIS
11905
WFC3
UVIS CCD Daily Monitor
The
behavior of the WFC3 UVIS CCD will be monitored daily with a set of
full-frame,
four-amp bias and dark frames. A smaller set of 2Kx4K
subarray
biases are acquired at less frequent intervals throughout the
cycle
to support subarray science observations. The internals from this
proposal,
along with those from the anneal procedure (Proposal 11909),
will
be used to generate the necessary superbias and superdark reference
files
for the calibration pipeline (CDBS).
WFC3/UVIS/IR
11644
A
Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into
the
Formation of the Outer Solar System
The
eight planets overwhelmingly dominate the solar system by mass, but
their
small numbers, coupled with their stochastic pasts, make it
impossible
to construct a unique formation history from the dynamical or
compositional
characteristics of them alone. In contrast, the huge
numbers
of small bodies scattered throughout and even beyond the
planets,
while insignificant by mass, provide an almost unlimited number
of
probes of the statistical conditions, history, and interactions in
the
solar system. To date, attempts to understand the formation and
evolution
of the Kuiper Belt have largely been dynamical simulations
where
a hypothesized starting condition is evolved under the
gravitational
influence of the early giant planets and an attempt is
made
to reproduce the current observed populations. With little
compositional
information known for the real Kuiper Belt, the test
particles
in the simulation are free to have any formation location and
history
as long as they end at the correct point. Allowing compositional
information
to guide and constrain the formation, thermal, and
collisional
histories of these objects would add an entire new dimension
to
our understanding of the evolution of the outer solar system. While
ground
based compositional studies have hit their flux limits already
with
only a few objects sampled, we propose to exploit the new
capabilities
of WFC3 to perform the first ever large-scale
dynamical-compositional
study of Kuiper Belt Objects (KBOs) and their
progeny
to study the chemical, dynamical, and collisional history of the
region
of the giant planets. The sensitivity of the WFC3 observations
will
allow us to go up to two magnitudes deeper than our ground based
studies,
allowing us the capability of optimally selecting a target list
for
a large survey rather than simply taking the few objects that can be
measured,
as we have had to do to date. We have carefully constructed a
sample
of 120 objects which provides both overall breadth, for a general
understanding
of these objects, plus a large enough number of objects in
the
individual dynamical subclass to allow detailed comparison between
and
within these groups. These objects will likely define the core
Kuiper
Belt compositional sample for years to come. While we have many
specific
results anticipated to come from this survey, as with any
project
where the field is rich, our current knowledge level is low, and
a
new instrument suddenly appears which can exploit vastly larger
segments
of the population, the potential for discovery -- both
anticipated
and not -- is extraordinary.
FLIGHT
OPERATIONS SUMMARY:
Significant
Spacecraft Anomalies: (The following are preliminary reports
of
potential non-nominal performance that will be investigated.)
HSTARS:
(None)
COMPLETED
OPS REQUEST: (None)
COMPLETED
OPS NOTES: (None)
SCHEDULED SUCCESSFUL
FGS
GSAcq
10
10
FGS
REAcq
6
6
OBAD
with Maneuver 7
7
SIGNIFICANT
EVENTS: (None)