Date: August 10th 2010

sci astro hubble http://groups google com/group/sci astro hubble?hl=en

sci astro hubble@googlegroups com

Today's topics:

  • Daily Report #5153 - 1 messages, 1 author http://groups google com/group/sci astro hubble/t/bd5c52d2369bb1a0?hl=en
  • Daily Report #5154 - 1 messages, 1 author http://groups google com/group/sci astro hubble/t/e223487d7b216b9c?hl=en
  • Daily Report #5155 - 1 messages, 1 author http://groups google com/group/sci astro hubble/t/28fb14bb3c258cca?hl=en

============================================================================== TOPIC: Daily Report #5153

http://groups google com/group/sci astro hubble/t/bd5c52d2369bb1a0?hl=en

== 1 of 1 == Date: Thurs, Aug 5 2010 7:46 am From: "Cooper, Joe"

HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

DAILY REPORT #5153

PERIOD COVERED: 5am August 4 - 5am August 5, 2010 (DOY 216/09:00z-217/09:00z)

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated )

HSTARS:

12347 - REAcq(2,1,1) at 216/21:56:09z failed due to large #44 command in V1

Observations affected: WFC3 69, 70 Proposal #ID 11644, 11908

COMPLETED OPS REQUEST:

18851-0 - CONTINGENCY: FGS Stuck in Coarse Track @ 216/2205z

COMPLETED OPS NOTES: (None)

                   SCHEDULED  SUCCESSFUL

FGS GSAcq 6 6 FGS REAcq 10 9 OBAD with Maneuver 5 5

SIGNIFICANT EVENTS: (None)

OBSERVATIONS SCHEDULED:

ACS/WFC 11996

CCD Daily Monitor (Part 3)

This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels The recorded frames are used to create bias and dark reference images for science data reduction and calibration This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17 To facilitate scheduling, this program is split into three proposals This proposal covers 308 orbits (19 25 weeks) from 21 June 2010 to 1 November 2010

COS/NUV/FUV 11598

How Galaxies Acquire their Gas: A Map of Multiphase Accretion and Feedback in Gaseous Galaxy Halos

We propose to address two of the biggest open questions in galaxy formation - how galaxies acquire their gas and how they return it to the IGM - with a concentrated COS survey of diffuse multiphase gas in the halos of SDSS galaxies at z = 0 15 - 0 35 Our chief science goal is to establish a basic set of observational facts about the physical state, metallicity, and kinematics of halo gas, including the sky covering fraction of hot and cold material, the metallicity of infall and outflow, and correlations with galaxy stellar mass, type, and color - all as a function of impact parameter from 10 - 150 kpc Theory suggests that the bimodality of galaxy colors, the shape of the luminosity function, and the mass-metallicity relation are all influenced at a fundamental level by accretion and feedback, yet these gas processes are poorly understood and cannot be predicted robustly from first principles We lack even a basic observational assessment of the multiphase gaseous content of galaxy halos on 100 kpc scales, and we do not know how these processes vary with galaxy properties This ignorance is presently one of the key impediments to understanding galaxy formation in general We propose to use the high-resolution gratings G130M and G160M on the Cosmic Origins Spectrograph to obtain sensitive column density measurements of a comprehensive suite of multiphase ions in the spectra of 43 z < 1 QSOs lying behind 43 galaxies selected from the Sloan Digital Sky Survey In aggregate, these sightlines will constitute a statistically sound map of the physical state and metallicity of gaseous halos, and subsets of the data with cuts on galaxy mass, color, and SFR will seek out predicted variations of gas properties with galaxy properties Our interpretation of these data will be aided by state-of-the-art hydrodynamic simulations of accretion and feedback, in turn providing information to refine and test such models We will also use Keck, MMT, and Magellan (as needed) to obtain optical spectra of the QSOs to measure cold gas with Mg II, and optical spectra of the galaxies to measure SFRs and to look for outflows In addition to our other science goals, these observations will help place the Milky Way's population of multiphase, accreting High Velocity Clouds (HVCs) into a global context by identifying analogous structures around other galaxies Our program is designed to make optimal use of the unique capabilities of COS to address our science goals and also generate a rich dataset of other absorption-line systems

STIS/CC 11845

CCD Dark Monitor Part 2

Monitor the darks for the STIS CCD

STIS/CCD 11847

CCD Bias Monitor-Part 2

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1, and 1x1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns

WFC3/ACS/IR 11563

Galaxies at z~7-10 in the Reionization Epoch: Luminosity Functions to <0 2L* from Deep IR Imaging of the HUDF and HUDF05 Fields

The first generations of galaxies were assembled around redshifts z~7-10+, just 500-800 Myr after recombination, in the heart of the reionization of the universe We know very little about galaxies in this period Despite great effort with HST and other telescopes, less than ~15 galaxies have been reliably detected so far at z>7, contrasting with the ~1000 galaxies detected to date at z~6, just 200-400 Myr later, near the end of the reionization epoch WFC3 IR can dramatically change this situation, enabling derivation of the galaxy luminosity function and its shape at z~7-8 to well below L*, measurement of the UV luminosity density at z~7-8 and z~8-9, and estimates of the contribution of galaxies to reionization at these epochs, as well as characterization of their properties (sizes, structure, colors) A quantitative leap in our understanding of early galaxies, and the timescales of their buildup, requires a total sample of ~100 galaxies at z~7-8 to ~29 AB mag We can achieve this with 192 WFC3 IR orbits on three disjoint fields (minimizing cosmic variance): the HUDF and the two nearby deep fields of the HUDF05 Our program uses three WFC3 IR filters, and leverages over 600 orbits of existing ACS data, to identify, with low contamination, a large sample of over 100 objects at z~7-8, a very useful sample of ~23 at z~8-9, and limits at z~10 By careful placement of the WFC3 IR and parallel ACS pointings, we also enhance the optical ACS imaging on the HUDF and a HUDF05 field We stress (1) the need to go deep, which is paramount to define L*, the shape, and the slope alpha of the luminosity function (LF) at these high redshifts; and (2) the far superior performance of our strategy, compared with the use of strong lensing clusters, in detecting significant samples of faint z~7-8 galaxies to derive their luminosity function and UV ionizing flux Our recent z~7 4 NICMOS results show that wide-area IR surveys, even of GOODS-like depth, simply do not reach faint enough at z~7-9 to meet the LF and UV flux objectives In the spirit of the HDF and the HUDF, we will waive any proprietary period, and will also deliver the reduced data to STScI The proposed data will provide a Legacy resource of great value for a wide range of archival science investigations of galaxies at redshifts z~2-9 The data are likely to remain the deepest IR/optical images until JWST is launched, and will provide sources for spectroscopic follow up by JWST, ALMA and EVLA

WFC3/IR/S/C 11929

IR Dark Current Monitor

Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time Therefore, dark current images must be collected using all sample sequences that will be used in science observations These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by Gos in Cycle 17 For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS)

WFC3/IR/WFC/ACS/UV 12061

Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey -- GOODS-South Field, Early Visits of SNe Search

This survey will document the first third of galactic evolution from z=8 to 1 5 and test for evolution in the properties of Type Ia supernovae to z~2 by imaging more than 250, 000 galaxies with WFC3/IR and ACS Five premier multi-wavelength regions are selected from within the Spitzer SEDS survey, providing complementary IRAC data down to 26 5 AB mag, a unique resource for stellar masses at high redshifts The use of five widely separated fields mitigates cosmic variance and yields statistically robust samples of galaxies down to 10^9 M_Sun out to z~8

We adopt a two-tiered strategy with a "Wide" component (roughly 2 orbits deep over ~0 2 sq degrees) and a "Deep" component (roughly 12 orbits deep over ~0 04 sq degrees) Combining these with ultra-deep imaging from the Cycle 17 HUDF09 program yields a three-tiered strategy for efficient sampling of both rare/bright and faint/common objects

Three of the Wide-survey fields are located in COSMOS, EGS, and UKIDSS/UDS Each of these consists of roughly 3x15 WFC3/IR tiles Each WFC3 tile will be observed for 2 orbits, with single orbits separated in time to allow a search for high-redshift Type Ia SNe The co-added exposure times will be approximately 2/3 orbit in J (F125W) and 4/3 orbit in H (F160W) ACS parallels overlap most of the WFC3 area and will consist of roughly 2/3 orbits in V (F606W) and 4/3 orbit in I (F814W) Because of the larger area of ACS, this results in effective exposures that are twice as long (4/3 in V, 8/3 in I), making a very significant improvement to existing ACS mosaics in COSMOS and EGS and creating a new ACS mosaic in UDS/UKIDSS where none now exists Other Wide-survey components are located in the GOODS fields (North and South) surrounding the Deep-survey areas

The Deep-survey fields cover roughly half of each GOODS field, with exact areas and placements to be determined as part of the Phase-2 process Each WFC3/IR tile within the Deep regions will receive approximately 12 orbits of exposure time split between Y (F105W), J (F125W), and H (F160W) Multi-epoch imaging will provide an efficient search for high-redshift Type Ia SNe here also ACS parallels are also taken in the Deep regions, with the goal of assembling enough total exposure time in F850LP and other filters to identify high redshift z>6 galaxies in concert with WFC3/IR data using the Lyman break technique

A portion of the GOODS-N campaign will take place while the field is in the HST Continuous Viewing Zone (CVZ) The bright time in those orbits will be used to obtain UV imaging with WFC3 in the F275W and F336W filters The exact number of orbits will not be known until Phase-2 planning is complete, but we anticipate that it will be possible to schedule at least 100 orbits, resulting in 5-sigma point-source depths of 26 6, 26 4 in F275W and F336W, respectively The science goals include measuring the Lyman-continuum escape fractions for galaxies at z~2 5 and identifying Lyman-break galaxies at z~2-3

The Type Ia supernova search program in this proposal is integrated with that in the Postman cluster MCT proposal, with this one stressing the more distant supernovae A combined follow-up program will provide light curves and grism spectra of 15-20 of the best candidates at redshifts 1

The new data will be used to answer many urgent questions in galaxy evolution and cosmology In the reionization era, we will identify hundreds of high-confidence z>7 galaxies in the Deep regions, in addition to hundreds of highly-luminous candidates in the Wide regions for detailed follow-up These samples will be used to construct a unified picture of star-formation and stellar mass buildup in early galaxies Extremely deep X-ray data will reveal distant AGNs to z>6, shedding light on the earliest stages of BH growth In the peak star formation/QSO era, z~2, we will document the properties of early disks, the build-up of bulges, the evolution of mergers, and the nature of AGN hosts to construct an integrated model for structural evolution, star formation quenching, and AGN triggering Finally, the ~8 Type Ia SNe found beyond z>1 5 in the supernova programs will establish the constancy of these standard candles independent of dark energy and yield the first measurement of the Type Ia rate at z~2 to distinguish among different progenitor models Lower-redshift SNe Ia at 1

This program takes full advantage of MCTP mode to fulfill Hubble's legacy for deep extragalactic science and prepare the way for JWST

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS)

WFC3/UVIS 11908

Cycle 17: UVIS Bowtie Monitor

Ground testing revealed an intermittent hysteresis type effect in the UVIS detector (both CCDs) at the level of ~1%, lasting hours to days Initially found via an unexpected bowtie-shaped feature in flatfield ratios, subsequent lab tests on similar e2v devices have since shown that it is also present as simply an overall offset across the entire CCD, i e , a QE offset without any discernable pattern These lab tests have further revealed that overexposing the detector to count levels several times full well fills the traps and effectively neutralizes the bowtie Each visit in this proposal acquires a set of three 3x3 binned internal flatfields: the first unsaturated image will be used to detect any bowtie, the second, highly exposed image will neutralize the bowtie if it is present, and the final image will allow for verification that the bowtie is gone

WFC3/UVIS/IR 11644

A Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into the Formation of the Outer Solar System

The eight planets overwhelmingly dominate the solar system by mass, but their small numbers, coupled with their stochastic pasts, make it impossible to construct a unique formation history from the dynamical or compositional characteristics of them alone In contrast, the huge numbers of small bodies scattered throughout and even beyond the planets, while insignificant by mass, provide an almost unlimited number of probes of the statistical conditions, history, and interactions in the solar system To date, attempts to understand the formation and evolution of the Kuiper Belt have largely been dynamical simulations where a hypothesized starting condition is evolved under the gravitational influence of the early giant planets and an attempt is made to reproduce the current observed populations With little compositional information known for the real Kuiper Belt, the test particles in the simulation are free to have any formation location and history as long as they end at the correct point Allowing compositional information to guide and constrain the formation, thermal, and collisional histories of these objects would add an entire new dimension to our understanding of the evolution of the outer solar system While ground based compositional studies have hit their flux limits already with only a few objects sampled, we propose to exploit the new capabilities of WFC3 to perform the first ever large-scale dynamical-compositional study of Kuiper Belt Objects (KBOs) and their progeny to study the chemical, dynamical, and collisional history of the region of the giant planets The sensitivity of the WFC3 observations will allow us to go up to two magnitudes deeper than our ground based studies, allowing us the capability of optimally selecting a target list for a large survey rather than simply taking the few objects that can be measured, as we have had to do to date We have carefully constructed a sample of 120 objects which provides both overall breadth, for a general understanding of these objects, plus a large enough number of objects in the individual dynamical subclass to allow detailed comparison between and within these groups These objects will likely define the core Kuiper Belt compositional sample for years to come While we have many specific results anticipated to come from this survey, as with any project where the field is rich, our current knowledge level is low, and a new instrument suddenly appears which can exploit vastly larger segments of the population, the potential for discovery -- both anticipated and not -- is extraordinary

WFC3/UVIS/IR 11702

Search for Very High-z Galaxies with WFC3 Pure Parallel

WFC3 will provide an unprecedented probe to the early universe beyond the current redshift frontier Here we propose a pure parallel program using this new instrument to search for Lyman-break galaxies at 6 520deg) that last for 4 orbits and longer, resulting a total survey area of about 140~230 square arcminute Based on our understanding of the new HST parallel observation scheduling process, we believe that the total number of long-duration pure parallel visits in Cycle 17 should be sufficient to accommodate our program We waive all proprietary rights to our data, and will also make the enhanced data products public in a timely manner

(1) We will use both the UVIS and the IR channels, and do not need to seek optical data from elsewhere

(2) Our program will likely triple the size of the probable candidate samples at z~7 and z~8, and will complement other targeted programs aiming at the similar redshift range

(3) Being a pure parallel program, our survey will only make very limited demand on the scarce HST resources More importantly, as the pure parallel pointings will be at random sight-lines, our program will be least affected by the bias due to the large scale structure ("cosmic variance")

(4) We aim at the most luminous LBG population, and will address the bright-end of the luminosity function at z~8 and z~7 We will constrain the value of L* in particular, which is critical for understanding the star formation process and the stellar mass assembly history in the first few hundred million years of the universe

(5) The candidates from our survey, most of which will be the brightest ones that any surveys would be able to find, will have the best chance to be spectroscopically confirmed at the current 8--10m telescopes

(6) We will also find a large number of extremely red, old galaxies at intermediate redshifts, and the fine spatial resolution offered by the WFC3 will enable us constrain their formation history based on the study of their morphology, and hence shed light on their connection to the very early galaxies in the universe

============================================================================== TOPIC: Daily Report #5154

http://groups google com/group/sci astro hubble/t/e223487d7b216b9c?hl=en

== 1 of 1 == Date: Fri, Aug 6 2010 8:26 am From: "Cooper, Joe"

HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

DAILY REPORT #5154

PERIOD COVERED: 5am August 5 - 5am August 6, 2010 (DOY 217/09:00z-218/09:00z)

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated )

HSTARS: (None)

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

                    SCHEDULED  SUCCESSFUL

FGS GSAcq 8 8 FGS REAcq 6 6 OBAD with Maneuver 6 6

SIGNIFICANT EVENTS: (None)

OBSERVATIONS SCHEDULED:

ACS/WFC3 11670

The Host Environments of Type Ia Supernovae in the SDSS Survey

The Sloan Digital Sky Survey Supernova Survey has discovered nearly 500 type Ia supernovae and created a large, unique, and uniform sample of these cosmological tools As part of a comprehensive study of the supernova hosts, we propose to obtain Hubble ACS images of a large fraction of these galaxies Integrated colors and spectra will be measured from the ground, but we require high-resolution HST imaging to provide accurate morphologies and color information at the site of the explosion This information is essential in determining the systematic effects of population age on type Ia supernova luminosities and improving their reliability in measuring dark energy Recent studies suggest two populations of type Ia supernovae: a class that explodes promptly after star-formation and one that is delayed by billions of years Measuring the star-formation rate at the site of the supernova from colors in the HST images may be the best way to differentiate between these classes

STIS/CCD 11845

CCD Dark Monitor Part 2

Monitor the darks for the STIS CCD

STIS/CCD 11847

CCD Bias Monitor-Part 2

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1, and 1x1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns

WFC3/ACS/IR 11563

Galaxies at z~7-10 in the Reionization Epoch: Luminosity Functions to <0 2L* from Deep IR Imaging of the HUDF and HUDF05 Fields

The first generations of galaxies were assembled around redshifts z~7-10+, just 500-800 Myr after recombination, in the heart of the reionization of the universe We know very little about galaxies in this period Despite great effort with HST and other telescopes, less than ~15 galaxies have been reliably detected so far at z>7, contrasting with the ~1000 galaxies detected to date at z~6, just 200-400 Myr later, near the end of the reionization epoch WFC3 IR can dramatically change this situation, enabling derivation of the galaxy luminosity function and its shape at z~7-8 to well below L*, measurement of the UV luminosity density at z~7-8 and z~8-9, and estimates of the contribution of galaxies to reionization at these epochs, as well as characterization of their properties (sizes, structure, colors) A quantitative leap in our understanding of early galaxies, and the timescales of their buildup, requires a total sample of ~100 galaxies at z~7-8 to ~29 AB mag We can achieve this with 192 WFC3 IR orbits on three disjoint fields (minimizing cosmic variance): the HUDF and the two nearby deep fields of the HUDF05 Our program uses three WFC3 IR filters, and leverages over 600 orbits of existing ACS data, to identify, with low contamination, a large sample of over 100 objects at z~7-8, a very useful sample of ~23 at z~8-9, and limits at z~10 By careful placement of the WFC3 IR and parallel ACS pointings, we also enhance the optical ACS imaging on the HUDF and a HUDF05 field We stress (1) the need to go deep, which is paramount to define L*, the shape, and the slope alpha of the luminosity function (LF) at these high redshifts; and (2) the far superior performance of our strategy, compared with the use of strong lensing clusters, in detecting significant samples of faint z~7-8 galaxies to derive their luminosity function and UV ionizing flux Our recent z~7 4 NICMOS results show that wide-area IR surveys, even of GOODS-like depth, simply do not reach faint enough at z~7-9 to meet the LF and UV flux objectives In the spirit of the HDF and the HUDF, we will waive any proprietary period, and will also deliver the reduced data to STScI The proposed data will provide a Legacy resource of great value for a wide range of archival science investigations of galaxies at redshifts z~2-9 The data are likely to remain the deepest IR/optical images until JWST is launched, and will provide sources for spectroscopic follow up by JWST, ALMA and EVLA

WFC3/ACS/IR 11677

Is 47 Tuc Young? Measuring its White Dwarf Cooling Age and Completing a Hubble Legacy

With this proposal we will firmly establish the age of 47 Tuc from its cooling white dwarfs 47 Tuc is the nearest and least reddened of the metal-rich disk globular clusters It is also the template used for studying the giant branches of nearby resolved galaxies In addition, the age sensitive magnitude spread between the main sequence turnoff and horizontal branch is identical for 47 Tuc, two bulge globular clusters and the bulge field population A precise relative age constraint for 47 Tuc, compared to the halo clusters M4 and NGC 6397, both of which we recently dated via white dwarf cooling, would therefore constrain when the bulge formed relative to the old halo globular clusters Of particular interest is that with the higher quality ACS data on NGC 6397, we are now capable with the technique of white dwarf cooling of determining ages to an accuracy of +/-0 4 Gyrs at the 95% confidence level Ages derived from the cluster turnoff are not currently capable of reaching this precision The important role that 47 Tuc plays in galaxy formation studies, and as the metal-rich template for the globular clusters, makes the case for a white dwarf cooling age for this metal-rich cluster compelling

Several recent analyses have suggested that 47 Tuc is more than 2 Gyrs younger than the Galactic halo Others have suggested an age similar to that of the most metal poor globular clusters The current situation is clearly uncertain and obviously a new approach to age dating this important cluster is required

With the observations of 47 Tuc, this project will complete a legacy for HST It will be the third globular cluster observed for white dwarf cooling; the three covering almost the full metallicity range of the cluster system Unless JWST has its proposed bluer filters (700 and 900 nm) this science will not be possible perhaps for decades until a large optical telescope is again in space Ages for globular clusters from the main sequence turnoff are less precise than those from white dwarf cooling making the science with the current proposal truly urgent

WFC3/ACS/IR 11731

Studying Cepheid Systematics in M81: H-Band Observations

The local value of the Hubble Constant remains one of the most important constraints in cosmology, but improving on the 10% accuracy of the HST Key Project is challenging No improvements will be convincing until the metallicity dependence is well constrained and blending effects are fully understood M81 and its dwarf companion Holmberg IX are superb laboratories for studying Cepheid systematics because they contain large numbers of bright Cepheids with a good spread in metallicity lying at a common, relatively close distance We have identified 180 12

WFC3/ACS/UVIS 11613

GHOSTS: Stellar Outskirts of Massive Spiral Galaxies

We propose to continue our highly successful GHOSTS HST survey of the resolved stellar populations of nearby, massive disk galaxies using SNAPs These observations provide star counts and color-magnitude diagrams 2-3 magnitudes below the tip of the Red Giant Branch of the outer disk and halo of each galaxy We will measure the metallicity distribution functions and stellar density profiles from star counts down to very low average surface brightnesses, equivalent to ~32 V-mag per square arcsec

This proposal will substantially improve our unique sampling of galaxy outskirts Our targets cover a range in galaxy mass, luminosity, inclination, and morphology As a function of these galaxy properties, this survey provides: - the most extensive, systematic measurement of radial light profiles and axial ratios of the diffuse stellar halos and outer disks of spiral galaxies; - a comprehensive analysis of halo metallicity distributions as function of galaxy type and position within the galaxy; - an unprecedented study of the stellar metallicity and age distribution in the outer disk regions where the disk truncations occur; - the first comparative study of globular clusters and their field stellar populations

We will use these fossil records of the galaxy assembly process to test halo formation models within the hierarchical galaxy formation scheme

WFC3/UVIS 11630

Monitoring Active Atmospheres on Uranus and Neptune

We propose Snapshot observations of Uranus and Neptune to monitor changes in their atmospheres on time scales of weeks and months, as we have been doing for the past seven years Previous Hubble Space Telescope observations (including previous Snapshot programs 8634, 10170, 10534, and 11156), together with near-IR images obtained using adaptive optics on the Keck Telescope, reveal both planets to be dynamic worlds which change on time scales ranging from hours to (terrestrial) years Uranus equinox occurred in December 2007, and the northern hemisphere is becoming fully visible for the first time since the early 1960s HST observations during the past several years (Hammel et al 2005, Icarus 175, 284 and references therein) have revealed strongly wavelength-dependent latitudinal structure, the presence of numerous visible-wavelength cloud features in the northern hemisphere, at least one very long- lived discrete cloud in the southern hemisphere, and in 2006 the first clearly defined dark spot seen on Uranus Long term ground-based observations (Lockwood and Jerzekiewicz, 2006, Icarus 180, 442; Hammel and Lockwood 2007, Icarus 186, 291) reveal seasonal brightness changes that seem to demand the appearance of a bright northern polar cap within the next few years Recent HST and Keck observations of Neptune (Sromovsky et al 2003, Icarus 163, 256 and references therein) show a general increase in activity at south temperate latitudes until 2004, when Neptune returned to a rather Voyager-like appearance with discrete bright spots rather than active latitude bands Further Snapshot observations of these two dynamic planets will elucidate the nature of long-term changes in their zonal atmospheric bands and clarify the processes of formation, evolution, and dissipation of discrete albedo features

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS)

============================================================================== TOPIC: Daily Report #5155

http://groups google com/group/sci astro hubble/t/28fb14bb3c258cca?hl=en

== 1 of 1 == Date: Mon, Aug 9 2010 7:04 am From: "Cooper, Joe"

HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

DAILY REPORT #5155

PERIOD COVERED: 5am August 6 - 5am August 9, 2010 (DOY 218/09:00z-221/09:00z)

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated )

HSTARS:

12351 - GSAcq (1,2,1) scheduled at 218/10:49:29z and REAcqs(1,2,1) scheduled at 218/11:51:11z, at 218/13:27:02z, and at 218/15:09:02z all results in fine lock backup (1,0,1) using FGS-1, scan step limit exceeded on FGS-2

Observations possibly affected: WFC3 113-118 Proposal ID#11694; COS 132 Proposal ID#11579; ACS 124-125 Proposal ID#11996; STIS 22-23 Proposal ID#11845; STIS 24, 25, 26 Proposal ID#11847

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

             SCHEDULED      SUCCESSFUL

FGS GSAcq 15 15 FGS REAcq 24 24 OBAD with Maneuver 11 11

SIGNIFICANT EVENTS: (None)

OBSERVATIONS SCHEDULED:

ACS/WFC/WFC3/IR/UV 12056

A Panchromatic Hubble Andromeda Treasury - I

We propose to image the north east quadrant of M31 to deep limits in the UV, optical, and near-IR HST imaging should resolve the galaxy into more than 100 million stars, all with common distances and foreground extinctions UV through NIR stellar photometry (F275W, F336W with WFC3/UVIS, F475W and F814W with ACS/WFC, and F110W and F160W with WFC3/NIR) will provide effective temperatures for a wide range of spectral types, while simultaneously mapping M31's extinction Our central science drivers are to: understand high-mass variations in the stellar IMF as a function of SFR intensity and metallicity; capture the spatially-resolved star formation history of M31; study a vast sample of stellar clusters with a range of ages and metallicities These are central to understanding stellar evolution and clustered star formation; constraining ISM energetics; and understanding the counterparts and environments of transient objects (novae, SNe, variable stars, x-ray sources, etc ) As its legacy, this survey adds M31 to the Milky Way and Magellanic Clouds as a fundamental calibrator of stellar evolution and star-formation processes for understanding the stellar populations of distant galaxies Effective exposure times are 977s in F275W, 1368s in F336W, 4040s in F475W, 4042s in F814W, 699s in F110W, and 1796s in F160W, including short exposures to avoid saturation of bright sources These depths will produce photon-limited images in the UV Images will be crowding-limited in the optical and NIR, but will reach below the red clump at all radii The images will reach the Nyquist sampling limit in F160W, F475W, and F814W

S/C 12046

COS FUV DCE Memory Dump

Whenever the FUV detector high voltage is on, count rate and current draw information is collected, monitored, and saved to DCE memory Every 10 msec the detector samples the currents from the HV power supplies (HVIA, HVIB) and the AUX power supply (AUXI) The last 1000 samples are saved in memory, along with a histogram of the number of occurrences of each current value

In the case of a HV transient (known as a "crackle" on FUSE), where one of these currents exceeds a preset threshold for a persistence time, the HV will shut down, and the DCE memory will be dumped and examined as part of the recovery procedure However, if the current exceeds the threshold for less than the persistence time (a "mini-crackle" in FUSE parlance), there is no way to know without dumping DCE memory By dumping and examining the histograms regularly, we will be able to monitor any changes in the rate of "mini-crackles" and thus learn something about the state of the detector

ACS/WFC 11996

CCD Daily Monitor (Part 3)

This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels The recorded frames are used to create bias and dark reference images for science data reduction and calibration This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17 To facilitate scheduling, this program is split into three proposals This proposal covers 308 orbits (19 25 weeks) from 21 June 2010 to 1 November 2010

WFC3/IR/S/CCD 11929

IR Dark Current Monitor

Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time Therefore, dark current images must be collected using all sample sequences that will be used in science observations These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by Gos in Cycle 17 For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS)

WFC3/IR 11920

WFC3 IR Image Quality

The IR imaging performance over the detector will be assessed periodically (every 4 months) in two passbands to check for image stability The field around star 58 in the open cluster NGC188 is the chosen target because it is sufficiently dense to provide good sampling over the FOV while providing enough isolated stars to permit accurate PSF (point spread function) measurement It is available year-round and used previously for ACS image quality assessment The field is astrometric, and astrometric guide stars will be used, so that the plate scale and image orientation may also be determined if necessary (as in SMOV proposals 11437 and 11443) Full frame images will be obtained at each of 4 POSTARG offset positions designed to improve sampling over the detector in F098M, F105W, and F160W The PSFs will be sampled at 4 positions with subpixel shifts in filters F164N and F127M

This proposal is a periodic repeat (once every 4 months) of the visits in SMOV proposal 11437 (activity ID WFC3-24) The data will be analyzed using the code and techniques described in ISR WFC3 2008-41 (Hartig) Profiles of encircled energy will be monitored and presented in an ISR If an update to the SIAF is needed, (V2, V3) locations of stars will be obtained from the Flight Ops Sensors and Calibrations group at GSFC, the (V2, V3) of the reference pixel and the orientation of the detector will be determined by the WFC3 group, and the Telescopes group will update and deliver the SIAF to the PRDB branch

The specific PSF metrics to be examined are encircled energy for aperture diameter 0 25, 0 37, and 0 60 arcsec, FWHM, and sharpness (See ISR WFC3 2008-41 tables 2 and 3 and preceding text ) ~20 stars distributed over the detector will be measured in each exposure for each filter The mean, rms, and rms of the mean will be determined for each metric The values determined from each of the 4 exposures per filter within a visit will be compared to each other to see to what extent they are affected by "breathing" Values will be compared from visit to visit, starting with the values obtained during SMOV after the fine alignment has been performed, to see if the measures of the compactness of the PSF indicate degradation over time The analysis will be repeated for stars on the inner part of the detector and stars on the outer part of the detector to check for differential degradation of the PSF

As an example of the analysis, one can examine the sharpness of the F160W PSF exposures made during thermal vacuum testing (ISR WFC3 2008-41) To compare two samples, one can define the PSFs on each half of the detector (lower and upper) as a sample (with 7 and 8 PSFs, respectively) The mean, rms, and rms of the mean sharpness are 0 0826, 0 0067, and 0 0027 for one half, and 0 0773, 0 0049, and 0 0019 for the other The difference of the means is 0 0053 and the statistical error in that difference is 0 0033, so the difference is not significant

WFC3/UVIS 11908

Cycle 17: UVIS Bowtie Monitor

Ground testing revealed an intermittent hysteresis type effect in the UVIS detector (both CCDs) at the level of ~1%, lasting hours to days Initially found via an unexpected bowtie-shaped feature in flatfield ratios, subsequent lab tests on similar e2v devices have since shown that it is also present as simply an overall offset across the entire CCD, i e , a QE offset without any discernable pattern These lab tests have further revealed that overexposing the detector to count levels several times full well fills the traps and effectively neutralizes the bowtie Each visit in this proposal acquires a set of three 3x3 binned internal flatfields: the first unsaturated image will be used to detect any bowtie, the second, highly exposed image will neutralize the bowtie if it is present, and the final image will allow for verification that the bowtie is gone

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS)

WFC3/UV 11904

UVIS Droplets

To characterize the effects of the contamination (i e , droplets) on the UVIS window, we will observe a star cluster in three wide band filters (F225W, F555W, and F814W) as well as a narrow band filter (F502N) and step the stars in the cluster across randomly located droplets The step size is 20 pixels, and we execute a five point line dither for each filter This should provide for observations both on and off the droplets, for the same star Internal flat fields are also obtained, but, due to the high f/# of the internal calibration system, the flats will be of limited utility, but will serve to map and crudely track any changes in the droplets The cluster needs to contain both hot and cool stars, and therefore we select NGC 6752, a nearby globular with a hot horizontal branch Note, although the total population of HB stars may be larger in systems such as NGC 2419, NGC 6715, and NGC 2808, those clusters are much further away and will not provide a high density of stars over the global image (the droplets are located over the entire frame) There will be three visits (initial, 7 days later, and 30 days later), with each visit requiring 4 orbits The total program thus requires 12 orbits total

COS/NUV 11900

NUV Internal/External Wavelength Scale Monitor

This program monitors the offsets between the wavelength scale set by the internal wavecal versus that defined by absorption lines in external targets This is accomplished by observing two external radial velocity standard targets: HD187691 with G225M and G285M and HD6655 with G285M and G230L The two standard targets have little flux in the wavelength range covered by G185M and so Feige 48 (sdO) is observed with this grating Both Feige 48 and HD6655 are also observed in SMOV The cenwaves observed in this program are a subset of the ones used during Cycle 17 Observing all cenwaves would require a considerably larger number of orbits Constraints on scheduling of each target are placed so that each target is observed once every ~2-3 months Observing the three targets every month would also require a considerably larger number of orbits

STIS/CCD 11847

CCD Bias Monitor-Part 2

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1, and 1x1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns

STIS/CCD 11845

CCD Dark Monitor Part 2

Monitor the darks for the STIS CCD

COS/NUV/FUV 11741

Probing Warm-Hot Intergalactic Gas at 0 5 < z < 1 3 with a Blind Survey for O VI, Ne VIII, Mg X, and Si XII Absorption Systems

Currently we can only account for half of the baryons (or less) expected to be found in the nearby universe based on D/H and CMB observations This "missing baryons problem" is one of the highest-priority challenges in observational extragalatic astronomy Cosmological simulations suggest that the baryons are hidden in low-density, shock-heated intergalactic gas in the log T = 5 - 7 range, but intensive UV and X-ray surveys using O VI, O VII, and O VIII absorption lines have not yet confirmed this prediction We propose to use COS to carry out a sensitive survey for Ne VIII and Mg X absorption in the spectra of nine QSOs at z(QSO) > 0 89 For the three highest-redshift QSOs, we will also search for Si XII This survey will provide more robust constraints on the quantity of baryons in warm-hot intergalactic gas at 0 5 < z < 1 3, and the data will provide rich constraints on the metal enrichment, physical conditions, and nature of a wide variety of QSO absorbers in addition to the warm-hot systems By comparing the results to other surveys at lower redshifts (with STIS, FUSE, and from the COS GTO programs), the project will also enable the first study of how these absorbers evolve with redshift at z < 1 By combining the program with follow-up galaxy redshift surveys, we will also push the study of galaxy-absorber relationships to higher redshifts, with an emphasis on the distribution of the WHIM with respect to the large-scale matter distribution of the universe

WFC3/IR 11696

Infrared Survey of Star Formation Across Cosmic Time

We propose to use the unique power of WFC3 slitless spectroscopy to measure the evolution of cosmic star formation from the end of the reionization epoch at z>6 to the close of the galaxy- building era at z~0 3 Pure parallel observations with the grisms have proven to be efficient for identifying line emission from galaxies across a broad range of redshifts The G102 grism on WFC3 was designed to extend this capability to search for Ly-alpha emission from the first galaxies Using up to 250 orbits of pure parallel WFC3 spectroscopy, we will observe about 40 deep (4-5 orbit) fields with the combination of G102 and G141, and about 20 shallow (2-3 orbit) fields with G141 alone

Our primary science goals at the highest redshifts are: (1) Detect Lya in ~100 galaxies with z>5 6 and measure the evolution of the Lya luminosity function, independent of of cosmic variance; 2) Determine the connection between emission line selected and continuum-break selected galaxies at these high redshifts, and 3) Search for the proposed signature of neutral hydrogen absorption at re-ionization At intermediate redshifts we will (4) Detect more than 1000 galaxies in Halpha at 0 5

To identify single-line Lya emitters, we will exploit the wide 0 8--1 9um wavelength coverage of the combined G102+G141 spectra All [OII] and [OIII] interlopers detected in G102 will be reliably separated from true LAEs by the detection of at least one strong line in the G141 spectrum, without the need for any ancillary data We waive all proprietary rights to our data and will make high-level data products available through the ST/ECF

WFC3/IR 11694

Mapping the Interaction Between High-Redshift Galaxies and the Intergalactic Environment

With the commissioning of the high-throughput large-area camera WFC3/IR, it is possible for the first time to undertake an efficient survey of the rest-frame optical morphologies of galaxies at the peak epoch of star formation in the universe We therefore propose deep WFC3/IR imaging of over 320 spectroscopically confirmed galaxies between redshift 1 6 < z < 3 4 in well-studied fields which lie along the line of sight to bright background QSOs The spectra of these bright QSOs probe the IGM in the vicinity of each of the foreground galaxies along the line of sight, providing detailed information on the physical state of the gas at large galactocentric radii In combination with our densely sampled UV/IR spectroscopy, stellar population models, and kinematic data in these fields, WFC3/IR imaging data will permit us to construct a comprehensive picture of the structure, dynamics, and star formation properties of a large population of galaxies in the early universe and their effect upon their cosmological environment

WFC3/UVIS 11657

The Population of Compact Planetary Nebulae in the Galactic Disk

We propose to secure narrow- and broad-band images of compact planetary nebulae (PNe) in the Galactic Disk to study the missing link of the early phases of post-AGB evolution Ejected AGB envelopes become PNe when the gas is ionized PNe expand, and, when large enough, can be studied in detail from the ground In the interim, only the HST capabilities can resolve their size, morphology, and central stars Our proposed observations will be the basis for a systematic study of the onset of morphology Dust properties of the proposed targets will be available through approved Spitzer/IRS spectra, and so will the abundances of the alpha- elements We will be able thus to explore the interconnection of morphology, dust grains, stellar evolution, and populations The target selection is suitable to explore the nebular and stellar properties across the galactic disk, and to set constraints on the galactic evolutionary models through the analysis of metallicity and population gradients

WFC3/IR 11631

Binary Brown Dwarfs and the L/T Transition

Brown dwarfs traverse spectral types M, L and T as their atmospheric structure evolves and they cool into oblivion This SNAPSHOT program will obtain WFC3-IR images of 45 nearby late-L and early-T dwarfs to investigate the nature of the L/T transition Recent analyses have suggested that a substantial proportion of late-L and early-T dwarfs are binaries, comprised of an L dwarf primary and T dwarf secondary WFC3-IR observations will let us quantify this suggestion by expanding coverage to a much larger sample, and permitting comparison of the L/T binary fraction against 'normal' ultracool dwarfs Only eight L/T binaries are currently known, including several that are poorly resolved: we anticipate at least doubling the number of resolved systems The photometric characteristics of additional resolved systems will be crucial to constraining theoretical models of these late-type ultracool dwarfs Finally, our data will also be eminently suited to searching for extremely low luminosity companions, potentially even reaching the Y dwarf regime

WFC3/ACS/UVIS 11613

GHOSTS: Stellar Outskirts of Massive Spiral Galaxies

We propose to continue our highly successful GHOSTS HST survey of the resolved stellar populations of nearby, massive disk galaxies using SNAPs These observations provide star counts and color-magnitude diagrams 2-3 magnitudes below the tip of the Red Giant Branch of the outer disk and halo of each galaxy We will measure the metallicity distribution functions and stellar density profiles from star counts down to very low average surface brightnesses, equivalent to ~32 V-mag per square arcsec

This proposal will substantially improve our unique sampling of galaxy outskirts Our targets cover a range in galaxy mass, luminosity, inclination, and morphology As a function of these galaxy properties, this survey provides: - the most extensive, systematic measurement of radial light profiles and axial ratios of the diffuse stellar halos and outer disks of spiral galaxies; - a comprehensive analysis of halo metallicity distributions as function of galaxy type and position within the galaxy; - an unprecedented study of the stellar metallicity and age distribution in the outer disk regions where the disk truncations occur; - the first comparative study of globular clusters and their field stellar populations

We will use these fossil records of the galaxy assembly process to test halo formation models within the hierarchical galaxy formation scheme

ACS/SBC/COS/NUV/FUV 11579

The Difference Between Neutral- and Ionized-Gas Metal Abundances in Local Star-Forming Galaxies with COS

The metallicity of galaxies and its evolution with redshift is of paramount importance for understanding galaxy formation Abundances in the interstellar medium (ISM) are typically determined using emission-line spectroscopy of HII regions However, since HII regions are associated with recent SF they may not have abundances typical for the galaxy as a whole This is true in particular for star-forming galaxies (SFGs), in which the bulk of the metals may be contained in the neutral gas It is therefore important to directly probe the metal abundances in the neutral gas This can be done using absorption lines in the Far UV We have developed techniques to do this in SFGs, where the absorption is measured for sightlines toward bright SF regions within the galaxy itself We have successfully applied this technique to a sample of galaxies observed with FUSE The results have been very promising, suggesting in I Zw 18 that abundances in the neutral gas may be up to 0 5 dex lower than in the ionized gas However, the interpretation of the FUSE data is complicated by the very large FUSE aperture (30 arcsec), the modest S/N, and the limited selection of species available in the FUSE bandpass The advent of COS on HST now allows a significant advance in all of these areas We will therefore obtain absorption line spectroscopy with G130M in the same sample for which we already have crude constraints from FUSE We will obtain ACS/SBC images to select the few optimal sightlines to target in each galaxy The results will be interpreted through line-profile fitting to determine the metal abundances constrained by the available lines The results will provide important new insights into the metallicities of galaxies, and into outstanding problems at high redshift such as the observed offset between the metallicities of Lyman Break Galaxies and Damped Lyman Alpha systems

WFC3/ACS/IR 11563

Galaxies at z~7-10 in the Reionization Epoch: Luminosity Functions to <0 2L* from Deep IR Imaging of the HUDF and HUDF05 Fields

The first generations of galaxies were assembled around redshifts z~7-10+, just 500-800 Myr after recombination, in the heart of the reionization of the universe We know very little about galaxies in this period Despite great effort with HST and other telescopes, less than ~15 galaxies have been reliably detected so far at z>7, contrasting with the ~1000 galaxies detected to date at z~6, just 200-400 Myr later, near the end of the reionization epoch WFC3 IR can dramatically change this situation, enabling derivation of the galaxy luminosity function and its shape at z~7-8 to well below L*, measurement of the UV luminosity density at z~7-8 and z~8-9, and estimates of the contribution of galaxies to reionization at these epochs, as well as characterization of their properties (sizes, structure, colors) A quantitative leap in our understanding of early galaxies, and the timescales of their buildup, requires a total sample of ~100 galaxies at z~7-8 to ~29 AB mag We can achieve this with 192 WFC3 IR orbits on three disjoint fields (minimizing cosmic variance): the HUDF and the two nearby deep fields of the HUDF05 Our program uses three WFC3 IR filters, and leverages over 600 orbits of existing ACS data, to identify, with low contamination, a large sample of over 100 objects at z~7-8, a very useful sample of ~23 at z~8-9, and limits at z~10 By careful placement of the WFC3 IR and parallel ACS pointings, we also enhance the optical ACS imaging on the HUDF and a HUDF05 field We stress (1) the need to go deep, which is paramount to define L*, the shape, and the slope alpha of the luminosity function (LF) at these high redshifts; and (2) the far superior performance of our strategy, compared with the use of strong lensing clusters, in detecting significant samples of faint z~7-8 galaxies to derive their luminosity function and UV ionizing flux Our recent z~7 4 NICMOS results show that wide-area IR surveys, even of GOODS-like depth, simply do not reach faint enough at z~7-9 to meet the LF and UV flux objectives In the spirit of the HDF and the HUDF, we will waive any proprietary period, and will also deliver the reduced data to STScI The proposed data will provide a Legacy resource of great value for a wide range of archival science investigations of galaxies at redshifts z~2-9 The data are likely to remain the deepest IR/optical images until JWST is launched, and will provide sources for spectroscopic follow up by JWST, ALMA and EVLA

==============================================================================

You received this message because you are subscribed to the Google Groups "sci astro hubble" group

To post to this group, visit http://groups google com/group/sci astro hubble?hl=en

To unsubscribe from this group, send email to sci astro hubble+unsubscribe@googlegroups com

To change the way you get mail from this group, visit: http://groups google com/group/sci astro hubble/subscribe?hl=en

To report abuse, send email explaining the problem to abuse@googlegroups com

============================================================================== Google Groups: http://groups google com/?hl=en



The following information is a reminder of your current mailing list subscription:

You are subscribed to the following list: [list_name]

using the following email: example@example.com

You may automatically unsubscribe from this list at any time by visiting the following URL:

https://aus-city com/cgi-bin/dada/mail cgi/u/HST_REPORTS/example/example com/

If the above URL is inoperable, make sure that you have copied the entire address Some mail readers will wrap a long URL and thus break this automatic unsubscribe mechanism

You may also change your subscription by visiting this list's main screen:

<[program_url]/list/[list]>

If you're still having trouble, please contact the list owner at:

<mailto:[list_owner_email]>

The following physical address is associated with this mailing list:

[physical_address]=

Forward to a Friend
 
  • This mailing list is a public mailing list - anyone may join or leave, at any time.
  • This mailing list is announce-only.

HST Status Report list

Privacy Policy:

Private list