sci astro hubble http://groups google com/group/sci astro hubble?hl=en
sci astro hubble@googlegroups com
Today's topics:
============================================================================== TOPIC: Daily Report #5175
== 1 of 1 == Date: Tues, Sep 7 2010 10:01 am From: "Cooper, Joe"
HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science
DAILY REPORT #5175
PERIOD COVERED: 5am September 3 - 5am September 7, 2010 (DOY 246/09:00z-249/09:00z)
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated )
HSTARS:
12376 - GSAcq(1,2,1) scheduled at 246/17:10:16z required two attempts to achieve FL-DV on FGS-1
Observations possibly affected: STIS 69 proposal ID#11668, ACS 77-78 proposal ID#11882
12377 - REAcq(1,2,1) Fails 2 Attempts, Fine Lock on 3rd Attempt @ 246/20:22z
Observations possibly affected: WFC3 170-171 proposal #11914, STIS 72 proposal #11668
12378 - GSAcq(2,1,1)scheduled at 248/03:04:13 resulted in fine lock backup on FGS2(2,0,2)
Observations possibly affected: ACS 104 proposal ID#11996, WFC3 234 and 235 proposal ID#11594, WFC3 2-3 proposal ID#11905
12381 ? GSAcq(1,2,1) Failed 1st Attempt, Fine lock on 2nd @ 249/12:16:37z
Observations possibly affected: STIS 9 proposal ID#11668
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL
FGS GSAcq 28 28 FGS REAcq 33 33 OBAD with Maneuver 25 25
SIGNIFICANT EVENTS: (None)
OBSERVATIONS SCHEDULED:
WFC3/UV 12232
Detection and Mass Measurement of an Isolated Brown
We propose observations that are likely to detect the brown dwarf lens object for microlensing event MACHO-179-A, which was observed by the MACHO collaboration some 15 years ago The strong microlensing parallax signal seen in the light curve and follow-up Keck adaptive optics images imply that the lens is a brown dwarf within about 300 parsecs If the lens object is at least as massive as 0 015 Solar masses at an age of 1 Gyr or 0 03 Solar masses at an age of 10 Gyr, these observations will detect the lens and measure its relative lens-source proper motion The relative proper motion can be combined with the microlensing parallax measurement and a precise WFC3/UVIS measurement of the source star brightness to yield a mass measurement of the source star to 3% or better
WFC3/IR 12217
Spectroscopy of Faint T Dwarf Calibrators: Understanding the Substellar Mass Function and the Coolest Brown Dwarfs
More than 100 methane brown dwarfs, or T dwarfs, have now been discovered in the local field with 2MASS, SLOAN and UKIDSS, opening up a new area of physics describing objects at 450-1400 K However, very few calibrator objects exist with well established ages and metallicities A very surprising result from the UKIDSS sample (supported by 2MASS and SLOAN) is that the substellar mass function in the local field appears to decline to lower masses, in marked contrast to the rising initial mass function (IMF) observed in young clusters Given that such a difference between the present day IMF and the Galactic time-averaged IMF is unlikely, it is very possible that the apparently falling IMF is an artifact of serious errors in either T model atmospheres or the evolutionary isochrones We propose WFC3 spectroscopy of 4 faint T dwarf calibrators with well established ages and metallicities in the Pleiades and Sigma Ori clusters, and 2 faint field T dwarfs from UKIDSS for comparison These spectra will constitute vital calibration data for T dwarf atmospheres with a wide range of surface gravities, which will be used to test and improve the model atmospheres They will also aid preparation for future spectroscopy of the much larger numbers of field T dwarfs to soon be found by VISTA and WISE These new surveys will permit a more precise measurement of the mass function and detection of even cooler objects
WFC3/UV 12091
WFC3/UVIS Fringe Calibration - Part 2
Fringing has been observed in flat fields of 12 narrowband filters (4 full-frame and 3 quad spectral elements) longer than 600 nm, with peak-to-peak fringe amplitude variations ranging from 0 5% to 14 2% (WFC3 ISR 2010-04) Two filters (F953N and F656N) will be tested in program 11922, supporting 88 Cycle 17 GO exposures in these filters Here we propose to observe globular cluster Omega Centauri (NGC 5139) in the other 10 filters affected by fringing, supporting 319 Cycle 17 GO exposures in these filters By measuring the relative changes in brightness of stars at different positions on the detector, we will determine the local variations induced by the fringing pattern
The data will serve two purposes: characterize the effect of fringing on photometry of on-orbit data, and verify models used to correct for fringing effects The models rely on Thermal Vacuum Test 3 (TV3) data between 845-990 nm and NASA/GSFC Detector Characterization Laboratory (DCL) test data from 700-1060 nm Only the F953N filter in program 11922 overlaps with the test data wavelength range, making it difficult to compare the efficacy of fringe models This program will expand the on-orbit fringing data so that we can compare models at 6 new wavelengths within the ground test data wavelength range, as well as 4 new wavelengths not covered by the ground test data Flight data in these 4 filters can be corrected by extrapolating the model beyond the wavelength range of the test data used to create the model
COS/FUV 12083
COS G140L/1280 lamp template
This is an internal only program that obtains lamp template spectra with the G140L grating at all FPPOS, using the new cenwave 1280 This new cenwave will be available to users starting in Cycle 18 Data obtained in this program will be used to update the FUV lamp template reference file We follow the same procedure following during SMOV when obtaining lamp template spectra, i e , to allow any mechanism drift to settle the first exposure is 1800 sec long, with the lamp flashed at regular intervals
Note that this program can only be executed after FSW changes have been made (current estimate for these FSW changes is ~Aug 2010 timeframe), as this mode is not yet implemented
S/C 12046
COS FUV DCE Memory Dump
Whenever the FUV detector high voltage is on, count rate and current draw information is collected, monitored, and saved to DCE memory Every 10 msec the detector samples the currents from the HV power supplies (HVIA, HVIB) and the AUX power supply (AUXI) The last 1000 samples are saved in memory, along with a histogram of the number of occurrences of each current value
In the case of a HV transient (known as a "crackle" on FUSE), where one of these currents exceeds a preset threshold for a persistence time, the HV will shut down, and the DCE memory will be dumped and examined as part of the recovery procedure However, if the current exceeds the threshold for less than the persistence time (a "mini-crackle" in FUSE parlance), there is no way to know without dumping DCE memory By dumping and examining the histograms regularly, we will be able to monitor any changes in the rate of "mini-crackles" and thus learn something about the state of the detector
COS/NUV/FUV 12034
COS-GTO: Brown Dwarf Activity Part 2
Based on the Findings in our Cycle 17 program, we will focus on M-stars in Cycle 18
WFC3/UV 12019
After the Fall: Fading AGN in Post-starburst Galaxies
We propose joint Chandra and HST observations of an extraordinary sample of 12 massive post-starburst galaxies at z=0 4-0 8 that are in the short-lived evolution phase a few 100 Myr after the peak of merger-driven star formation and AGN activity We will use the data to measure X-ray luminosities, black hole masses, and accretion rates; and with the accurate "clocks" provided by post-starburst stellar populations, we will directly test theoretical models that predict a power-law decay in the AGN light curve We will also test whether star formation and black hole accretion shut down in lock-step, quantify whether the black holes transition to radiatively inefficient accretion states, and constrain the observational signatures of black hole mergers
WFC3/UVIS 12018
Ultra-Luminous X-Ray Sources in the Most Metal-Poor Galaxies
There is growing observational and theoretical evidence to suggest that Ultra-Luminous X-ray sources (ULX) form preferentially in low metallicity environments Here we propose a survey of 27 nearby (< 30Mpc) star-forming Extremely Metal Poor Galaxies (Z<5% solar) There are almost no X-ray observations of such low abundance galaxies (3 in the Chandra archive) These are the most metal-deficient galaxies known, and a logical place to find ULX if they favor metal-poor systems We plan to test recent population synthesis models which predict that ULX should be very numerous in metal-poor galaxies We will also test the hypothesis that ULX form in massive young star clusters, and ask for HST time to obtain the necessary imaging data
WFC3/UV 12008
Primordial formation of Close Binaries in Globular Clusters with Low Density Cores
The primordial binary population is a key input parameter for any realistic model of dense star cluster dynamics However, the number of primordial binaries and its direct implications for the formation rate of close binaries remain poorly understood Theoretical calculations show that cataclysmic variables can be formed directly from primordial binaries in or near the core of low core density globular clusters We propose to use Chandra/HST to study low density core globular clusters systematically and to test the prediction that low-luminosity X-ray sources can be formed from primordial binaries in the cluster core This project will complement our successful Chandra/HST program to study the dynamical formation of X-ray sources in high core density globular clusters
ACS/WFC 11996
CCD Daily Monitor (Part 3)
This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels The recorded frames are used to create bias and dark reference images for science data reduction and calibration This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17 To facilitate scheduling, this program is split into three proposals This proposal covers 308 orbits (19 25 weeks) from 21 June 2010 to 1 November 2010
WFC3/IR/S/C 11929
IR Dark Current Monitor
Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time Therefore, dark current images must be collected using all sample sequences that will be used in science observations These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by Gos in Cycle 17 For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS)
WFC3/IR 11928
WFC3/IR Low-Frequency Flat and Geometric Distortion
Multiple observations of globular cluster Omega Cen at multiple infrared wavelengths of IR detector will be used to derive filter dependency of low-frequency sensitivity (L_flat fields) across of IR detector and its time variation Additionally, the same data will be also used to derive filter-dependant geometric distortion of the detector and its time-dependency
WFC3/UVIS 11914
UVIS Earth Flats
This program is an experimental path finder for Cycle 18 calibration Visible-wavelength flat fields will be obtained by observing the dark side of the Earth during periods of full moon illumination The observations will consist of full-frame streaked WFC3 UVIS imagery: per 22- min total exposure time in a single "dark-sky" orbit, we anticipate collecting 7000 e/pix in F606W or 4500 e/pix in F814W To achieve Poisson S/N > 100 per pixel, we require at least 2 orbits of F606W and 3 orbits of F814W
For UVIS narrowband filters, exposures of 1 sec typically do not saturate on the sunlit Earth, so we will take sunlit Earth flats for three of the more-commonly used narrowband filters in Cycle 17 plus the also-popular long-wavelength quad filters, for which we get four filters at once
Why not use the Sunlit Earth for the wideband visible-light filters? It is too bright in the visible for WFC3 UVIS minimum exposure time of 0 5 sec Similarly, for NICMOS the sunlit-Earth is too bright which saturates the detector too quickly and/or induces abnormal behaviors such as super-shading (Gilmore 1998, NIC 098-011) In the narrowband visible and broadband near- UV its not too bright (predictions in Cox et al 1987 "Standard Astronomical Sources for HST: 6 Spatially Flat Fields " and observations in ACS Program 10050)
Other possibilities? Cox et al 's Section II D addresses many other possible sources for flat fields, rejecting them for a variety of reasons A remaining possibility would be the totally eclipsed moon Such eclipses provide approximately 2 hours (1 HST orbit) of opportunity per year, so they are too rare to be generically useful An advantage of the moon over the Earth is that the moon subtends less than 0 25 square degree, whereas the Earth subtends a steradian or more, so scattered light and light potentially leaking around the shutter presents additional problems for the Earth Also, we're unsure if HST can point 180 deg from the Sun
WFC3/UVIS 11912
UVIS Internal Flats
This proposal will be used to assess the stability of the flat field structure for the UVIS detector throughout the 15 months of Cycle 17 The data will be used to generate on-orbit updates for the delta-flat field reference files used in the WFC3 calibration pipeline, if significant changes in the flat structure are seen
WFC3/UVIS 11908
Cycle 17: UVIS Bowtie Monitor
Ground testing revealed an intermittent hysteresis type effect in the UVIS detector (both CCDs) at the level of ~1%, lasting hours to days Initially found via an unexpected bowtie- shaped feature in flatfield ratios, subsequent lab tests on similar e2v devices have since shown that it is also present as simply an overall offset across the entire CCD, i e , a QE offset without any discernable pattern These lab tests have further revealed that overexposing the detector to count levels several times full well fills the traps and effectively neutralizes the bowtie Each visit in this proposal acquires a set of three 3x3 binned internal flatfields: the first unsaturated image will be used to detect any bowtie, the second, highly exposed image will neutralize the bowtie if it is present, and the final image will allow for verification that the bowtie is gone
WFC3/UVIS 11905
WFC3 UVIS CCD Daily Monitor
The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS)
COS/FUV 11895
FUV Detector Dark Monitor
Monitor the FUV detector dark rate by taking long science exposures without illuminating the detector The detector dark rate and spatial distribution of counts will be compared to pre-launch and SMOV data in order to verify the nominal operation of the detector Variations of count rate as a function of orbital position will be analyzed to find dependence of dark rate on proximity to the SAA Dependence of dark rate as function of time will also be tracked
COS/NUV 11894
NUV Detector Dark Monitor
The purpose of this proposal is to measure the NUV detector dark rate by taking long science exposures with no light on the detector The detector dark rate and spatial distribution of counts will be compared to pre-launch and SMOV data in order to verify the nominal operation of the detector Variations of count rate as a function of orbital position will be analyzed to find dependence of dark rate on proximity to the SAA Dependence of dark rate as function of time will also be tracked
ACS/WFC3 11882
CCD Hot Pixel Annealing
This program continues the monthly anneal that has taken place every four weeks for the last three cycles We now obtain WFC biases and darks before and after the anneal in the same sequence as is done for the ACS daily monitor (now done 4 times per week) So the anneal observation supplements the monitor observation sets during the appropriate week Extended Pixel Edge Response (EPER) and First Pixel Response (FPR) data will be obtained over a range of signal levels for the Wide Field Channel (WFC) This program emulates the ACS pre-flight ground calibration and post-launch SMOV testing (program 8948), so that results from each epoch can be directly compared The High Resolution Channel (HRC) visits have been removed since it could not be repaired during SM4
This program also assesses the read noise, bias structure, and amplifier cross-talk of ACS/WFC using the GAIN=1 4 A/D conversion setting This investigation serves as a precursor to a more comprehensive study of WFC performance using GAIN=1 4
STIS/CCD 11849
STIS CCD Hot Pixel Annealing
This purpose of this activity is to repair radiation induced hot pixel damage to the STIS CCD by warming the CCD to the ambient instrument temperature and annealing radiation-damaged pixels
Radiation damage creates hot pixels in the STIS CCD Detector Many of these hot pixels can be repaired by warming the CCD from its normal operating temperature near -83 deg C to the ambient instrument temperature (~ +5 deg C) for several hours The number of hot pixels repaired is a function of annealing temperature The effectiveness of the CCD hot pixel annealing process is assessed by measuring the dark current behavior before and after annealing and by searching for any window contamination effects
STIS/CCD 11847
CCD Bias Monitor-Part 2
Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1, and 1x1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns
STIS/CCD 11845
CCD Dark Monitor Part 2
Monitor the darks for the STIS CCD
STIS/CCD 11740
A Complete Optical and NIR Atmospheric Transmission Spectrum of the Exoplanet
The hot Jupiter HD189733b offers the best exoplanet in which to perform atmospheric studies through transit spectroscopy Here we propose STIS and Nicmos spectra to help construct a full exoplanetary transit transmission spectrum that extends over the entire optical and near-infrared range Such a spectrum will link existing observed atmospheric features such as haze, water, and methane, providing a coherent understanding of all these reported features With a spectrum covering many observed absorption features, the absolute pressure scale and abundances can be determined linking observed features to the actual atmospheric properties of the exoplanet
WFC3/IR 11738
SPIDERWEBS AND FLIES: OBSERVING MASSIVE GALAXY FORMATION IN ACTION
Distant luminous radio galaxies are among the brightest known galaxies in the early Universe, pinpoint likely progenitors of dominant cluster galaxies and are unique laboratories for studying massive galaxy formation Spectacular images with the ACS and NICMOS of one such object, the "Spiderweb Galaxy" at z = 2 2, show in exquisite detail, hierarchical merging occurring 11 Gyr ago By imaging 3 additional Spiderweb-like galaxies we wish to study this potentially crucial phase of massive galaxy evolution, when hierarchical merging, galaxy downsizing and AGN feedback are all likely to be occurring Properties of the complete sample of Spiderweb galaxies will be used to (i) constrain models for the formation and evolution of the most massive galaxies that dominate rich clusters and (ii) investigate the nature of chain and tadpole galaxies, a fundamental but poorly understood constituent of the early Universe
We shall image rest-frame UV and optical continuum emission from 3 radio galaxies with 2 4 < z < 3 8 that appear clumpy and large in shallow WFPC/PC observations The new observations will typically reach ~2 magnitudes fainter over 20-40 times larger area than previously Photometric and morphological parameters will be measured for satellite galaxies ("flies") in the clumpy massive hosts and for galaxies in ~ 1 5 Mpc x 1 5 Mpc regions of surrounding protoclusters Locations, sizes, elongations, clumpiness, masses, and star formation rates of the merging satellite and protocluster galaxies will be compared with new state of the art simulations Combination of ACS and WFC3 images will help disentangle the properties of the young and old populations
Specific goals include: (i) investigating star formation histories of the satellite galaxies and the extended emission, (ii) studying "downsizing" and merging scenarios and (iii) measuring the statistics of linear galaxies and relating them to models for the formation of massive galaxies and to the properties of the important but enigmatic class of chain/tadpole galaxies in the HUDF
STIS/CCD 11721
Verifying the Utility of Type Ia Supernovae as Cosmological Probes: Evolution and Dispersion in the Ultraviolet Spectra
The study of distant type Ia supernova (SNe Ia) offers the most practical and immediate discriminator between popular models of dark energy Yet fundamental questions remain over possible redshift-dependent trends in their observed and intrinsic properties High-quality Keck spectroscopy of a representative sample of 36 intermediate redshift SNe Ia has revealed a surprising, and unexplained, diversity in their rest-frame UV fluxes One possible explanation is hitherto undiscovered variations in the progenitor metallicity Unfortunately, this result cannot be compared to local UV data as only two representative SNe Ia have been studied near maximum light Taking advantage of two new `rolling searches' and the restoration of STIS, we propose a non-disruptive TOO campaign to create an equivalent comparison local sample This will allow us to address possible evolution in the mean UV spectrum and its diversity, an essential precursor to the study of SNe beyond z~1
WFC3/UVIS 11714
Snapshot Survey for Planetary Nebulae in Local Group Globular Clusters
Planetary nebulae (PNe) in globular clusters (GCs) raise a number of interesting issues related to stellar and galactic evolution The number of PNe known in Milky Way GCs, four, is surprisingly low if one assumes that all stars pass through a PN stage However, it is likely that the remnants of stars now evolving in galactic GCs leave the AGB so slowly that any ejected nebula dissipates long before the star becomes hot enough to ionize it Thus there should not be ANY PNe in Milky Way GCs--but there are four! It has been suggested that these Pne are the result of mergers of binary stars within GCs, i e , that they are descendants of blue stragglers The frequency of occurrence of PNe in external galaxies poses more questions, because it shows a range of almost an order of magnitude
I propose a SNAPshot survey aimed at discovering PNe in the GC systems of Local Group galaxies outside the Milky Way These clusters, some of which may be much younger than their counterparts in our galaxy, might contain many more PNe than those of our own galaxy I will use the standard technique of emission-line and continuum imaging, which easily discloses PNe This proposal continues a WFPC2 program started in Cycle 16, but with the more powerful WFC3 As a by-product, the survey will also produce color-magnitude diagrams for numerous clusters for the first time, reaching down to the horizontal branch
STIS/CCD/MA 11668
Cosmo-chronometry and Elemental Abundance Distribution of the Ancient Star HE1523-0901
We propose to obtain near-UV HST/STIS spectroscopy of the extremely metal-poor, highly r-process-enhanced halo star HE 1523-0901, in order to produce the most complete abundance distribution of the heaviest stable elements, including platinum, osmium, and lead These HST abundance data will then be used to estimate the initial abundances of the long-lived radioactive elements thorium and uranium, and by comparison with their observed abundances, enable an accurate age determination of this ancient star The use of radioactive chronometers in stars provides an independent lower limit on the age of the Galaxy, which can be compared with alternative limits set by globular clusters and by analysis from WMAP Our proposed observations of HE1523-0901 will also provide significant new information about the early chemical history of the Galaxy, specifically, the nature of the first generations of stars and the types of nucleosynthetic processes that occurred at the onset of Galactic chemical evolution
COS/NUV/ACS/WFC/FUV 11658
Probing the Outer Regions of M31 with QSO Absorption Lines
We propose HST-COS spectroscopy of 10 quasars behind M31 Absorption lines due to MgII, FeII, CIV, and a variety of other lines will be searched for and measured Six quasars lie between 1 and 4 2 Holmberg radii near the major axis on the southwest side, where confusion with Milky Way gas is minimized Two lie even farther out on the southwest side of the major axis One lies within 1 Holmberg radius Two of the 10 pass through M31's high velocity clouds seen in a detailed 21 cm emission map Exposure time estimates were based on SDSS magnitudes and available GALEX magnitudes Thus, using the most well-studied external spiral galaxy in the sky, our observations will permit us to check, better than ever before, the standard picture that quasar metal-line absorption systems such as MgII and CIV arise in an extended gaseous halo/disk of a galaxy well beyond its observable optical radius The observations will yield insights into the nature of the gas and its connection to the very extended stellar components of M31 that have recently been studied Notably the observations have the potential of extending M31's rotation curve to very large galactocentric distances, thereby placing new constraints on M31's dark matter halo
Finally, we also request that the coordinated parallel orbits be allocated to this program so that we may image the resolved stellar content of M31's halo and outer disk
WFC3/UVIS 11657
The Population of Compact Planetary Nebulae in the Galactic Disk
We propose to secure narrow- and broad-band images of compact planetary nebulae (PNe) in the Galactic Disk to study the missing link of the early phases of post-AGB evolution Ejected AGB envelopes become PNe when the gas is ionized PNe expand, and, when large enough, can be studied in detail from the ground In the interim, only the HST capabilities can resolve their size, morphology, and central stars Our proposed observations will be the basis for a systematic study of the onset of morphology Dust properties of the proposed targets will be available through approved Spitzer/IRS spectra, and so will the abundances of the alpha- elements We will be able thus to explore the interconnection of morphology, dust grains, stellar evolution, and populations The target selection is suitable to explore the nebular and stellar properties across the galactic disk, and to set constraints on the galactic evolutionary models through the analysis of metallicity and population gradients
STIS/CCD 11626
Searching for the Upper Mass Limit in NGC 3603, the Nearest Giant H II Region
What is the mass of the highest mass star? 100Mo? 150Mo? 200Mo? Or higher? Theory gives us little guidance as to what physics sets the upper mass limit, presuming one exists Is it due to limitations in the highest masses that can coalesce? Or is it due to stability issues in such a behemoth? Observationally, the upper mass limit is poorly constrained at present, with the strongest evidence coming from the K-band luminosity function of the Arches cluster near the Galactic Center Here we propose to investigate this question by determining the Initial Mass Function of NGC 3603, the nearest giant H II region This cluster is known to contain a wealth of O3 and hydrogen-rich Wolf-Rayets, the most luminous and massive of stars By constructing an accurate H-R diagram for the cluster, we will construct a present day mass function using newly computed high mass evolutionary tracks, and convert this to an initial mass function using the inferred ages This will allow us to see whether or not there is a true deficit of high mass stars, evidence of an upper mass cutoff At the same time we are likely to establish good masses for the highest mass stars ever determined We have laid the groundwork for this project using the Magellan 6 5-m telescope and the excellent seeing found on Las Campanas, plus analysis of archival ACS/HRS frames, but we now need to obtain spectra of the stars unobservable from the ground This can only be done with HST and a refurbished STIS
ACS/WFC3 11599
Distances of Planetary Nebulae from SNAPshots of Resolved Companions
Reliable distances to individual planetary nebulae (PNe) in the Milky Way are needed to advance our understanding of their spatial distribution, birthrates, influence on galactic chemistry, and the luminosities and evolutionary states of their central stars (CSPN) Few PNe have good distances, however One of the best ways to remedy this problem is to find resolved physical companions to the CSPN and measure their distances by photometric main- sequence fitting We have previously used HST to identify and measure probable companions to 10 CSPN, based on angular separations and statistical arguments only We now propose to use HST to re-observe 48 PNe from that program for which additional companions are possibly present We then can use the added criterion of common proper motion to confirm our original candidate companions and identify new ones in cases that could not confidently be studied before We will image the region around each CSPN in the V and I bands, and in some cases in the B band Field stars that appear close to the CSPN by chance will be revealed by their relative proper motion during the 13+ years since our original survey, leaving only genuine physical companions in our improved and enlarged sample This study will increase the number of Galactic PNe with reliable distances by 50 percent and improve the distances to PNe with previously known companions
WFC3/UVIS 11594
A WFC3 Grism Survey for Lyman Limit Absorption at z=2
We propose to conduct a spectroscopic survey of Lyman limit absorbers at redshifts 1 8 < z < 2 5, using WFC3 and the G280 grism This proposal intends to complete an approved Cycle 15 SNAP program (10878), which was cut short due to the ACS failure We have selected 64 quasars at 2 3 < z < 2 6 from the Sloan Digital Sky Survey Spectroscopic Quasar Sample, for which no BAL signature is found at the QSO redshift and no strong metal absorption lines are present at z
2 3 along the lines of sight The survey has three main observational goals First, we will determine the redshift frequency dn/dz of the LLS over the column density range 16 0 < log(NHI) < 20 3 cm^-2 Second, we will measure the column density frequency distribution f(N) for the partial Lyman limit systems (PLLS) over the column density range 16 0 < log(NHI) < 17 5 cm^-2 Third, we will identify those sightlines which could provide a measurement of the primordial D/H ratio By carrying out this survey, we can also help place meaningful constraints on two key quantities of cosmological relevance First, we will estimate the amount of metals in the LLS using the f(N), and ground based observations of metal line transitions Second, by determining f(N) of the PLLS, we can constrain the amplitude of the ionizing UV background at z~2 to a greater precision This survey is ideal for a snapshot observing program, because the on-object integration times are all well below 30 minutes, and follow-up observations from the ground require minimal telescope time due to the QSO sample being bright
WFC3/UVIS 11588
Galaxy-Scale Strong Lenses from the CFHTLS Survey
We aim to investigate the origin and evolution of early-type galaxies using gravitational lensing, modeling the mass profiles of objects over a wide range of redshifts The low redshift (z = 0 2) sample is already in place following the successful HST SLACS survey; we now propose to build up and analyze a sample of comparable size (~50 systems) at high redshift (0 4 < z < 0 9) using HST WFC3 Snapshot observations of lens systems identified by the SL2S collaboration in the CFHT legacy survey
WFC3/ACS/IR 11563
Galaxies at z~7-10 in the Reionization Epoch: Luminosity Functions to <0 2L* from Deep IR Imaging of the HUDF and HUDF05 Fields
The first generations of galaxies were assembled around redshifts z~7-10+, just 500-800 Myr after recombination, in the heart of the reionization of the universe We know very little about galaxies in this period Despite great effort with HST and other telescopes, less than ~15 galaxies have been reliably detected so far at z>7, contrasting with the ~1000 galaxies detected to date at z~6, just 200-400 Myr later, near the end of the reionization epoch WFC3 IR can dramatically change this situation, enabling derivation of the galaxy luminosity function and its shape at z~7-8 to well below L*, measurement of the UV luminosity density at z~7-8 and z~8-9, and estimates of the contribution of galaxies to reionization at these epochs, as well as characterization of their properties (sizes, structure, colors) A quantitative leap in our understanding of early galaxies, and the timescales of their buildup, requires a total sample of ~100 galaxies at z~7-8 to ~29 AB mag We can achieve this with 192 WFC3 IR orbits on three disjoint fields (minimizing cosmic variance): the HUDF and the two nearby deep fields of the HUDF05 Our program uses three WFC3 IR filters, and leverages over 600 orbits of existing ACS data, to identify, with low contamination, a large sample of over 100 objects at z~7-8, a very useful sample of ~23 at z~8-9, and limits at z~10 By careful placement of the WFC3 IR and parallel ACS pointings, we also enhance the optical ACS imaging on the HUDF and a HUDF05 field We stress (1) the need to go deep, which is paramount to define L*, the shape, and the slope alpha of the luminosity function (LF) at these high redshifts; and (2) the far superior performance of our strategy, compared with the use of strong lensing clusters, in detecting significant samples of faint z~7-8 galaxies to derive their luminosity function and UV ionizing flux Our recent z~7 4 NICMOS results show that wide-area IR surveys, even of GOODS-like depth, simply do not reach faint enough at z~7-9 to meet the LF and UV flux objectives In the spirit of the HDF and the HUDF, we will waive any proprietary period, and will also deliver the reduced data to STScI The proposed data will provide a Legacy resource of great value for a wide range of archival science investigations of galaxies at redshifts z~2- 9 The data are likely to remain the deepest IR/optical images until JWST is launched, and will provide sources for spectroscopic follow up by JWST, ALMA and EVLA
WFC3/UV 11556
Investigations of the Pluto System
We propose a set of high SNR observations of the Pluto system that will provide improved lightcurves, orbits, and photometric properties of Nix and Hydra The key photometric result for Nix and Hydra will be a vastly improved lightcurve shape and rotation period to test if the objects are in synchronous rotation or not A second goal of this program will be to retrieve a new epoch of albedo map for the surface of Pluto These observations will also improve masses and in some case densities for the bodies in the Pluto system
============================================================================== TOPIC: Daily Report #5176
== 1 of 1 == Date: Wed, Sep 8 2010 8:39 am From: "Cooper, Joe"
HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science
DAILY REPORT #5176
PERIOD COVERED: 5am September 7 - 5am September 8, 2010 (DOY 250/09:00z-251/09:00z)
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated )
HSTARS: (None)
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL
FGS GSAcq 04 04 FGS REAcq 11 11 OBAD with Maneuver 04 04
SIGNIFICANT EVENTS: (None)
OBSERVATIONS SCHEDULED:
ACS/WFC 12210
SLACS for the Masses: Extending Strong Lensing to Lower Masses and Smaller Radii
Strong gravitational lensing provides the most accurate possible measurement of mass in the central regions of early-type galaxies (ETGs) We propose to continue the highly productive Sloan Lens ACS (SLACS) Survey for strong gravitational lens galaxies by observing a substantial fraction of 135 new ETG gravitational-lens candidates with HST-ACS WFC F814W Snapshot imaging The proposed target sample has been selected from the seventh and final data release of the Sloan Digital Sky Survey, and is designed to complement the distribution of previously confirmed SLACS lenses in lens-galaxy mass and in the ratio of Einstein radius to optical half-light radius The observations we propose will lead to a combined SLACS sample covering nearly two decades in mass, with dense mapping of enclosed mass as a function of radius out to the half-light radius and beyond With this longer mass baseline, we will extend our lensing and dynamical analysis of the mass structure and scaling relations of ETGs to galaxies of significantly lower mass, and directly test for a transition in structural and dark-matter content trends at intermediate galaxy mass The broader mass coverage will also enable us to make a direct connection to the structure of well-studied nearby ETGs as deduced from dynamical modeling of their line-of-sight velocity distribution fields Finally, the combined sample will allow a more conclusive test of the current SLACS result that the intrinsic scatter in ETG mass-density structure is not significantly correlated with any other galaxy observables The final SLACS sample at the conclusion of this program will comprise approximately 130 lenses with known foreground and background redshifts, and is likely to be the largest confirmed sample of strong-lens galaxies for many years to come
COS/FUV 11686
The Cosmological Impact of AGN Outflows: Measuring Absolute Abundances and Kinetic Luminosities
AGN outflows are increasingly invoked as a major contributor to the formation and evolution of supermassive black holes, their host galaxies, the surrounding IGM, and cluster cooling flows Our HST/COS proposal will determine reliable absolute chemical abundances in six AGN outflows, which influences several of the processes mentioned above To date there is only one such determination, done by our team on Mrk 279 using 16 HST/STIS orbits and 100 ksec of FUSE time The advent of COS and its high sensitivity allows us to choose among fainter objects at redshifts high enough to preclude the need for FUSE This will allow us to determine the absolute abundances for six AGN (all fainter than Mrk 279) using only 40 HST COS orbits This will put abundances studies in AGN on a firm footing, an elusive goal for the past four decades In addition, prior FUSE observations of four of these targets indicate that it is probable that the COS observations will detect troughs from excited levels of C III These will allow us to measure the distances of the outflows and thereby determine their kinetic luminosity, a major goal in AGN feedback research
We will use our state of the art column density extraction methods and velocity-dependent photoionization models to determine the abundances and kinetic luminosity Previous AGN outflow projects suffered from the constraints of deciding what science we could do using ONE of the handful of bright targets that were observable With COS we can choose the best sample for our experiment As an added bonus, most of the spectral range of our targets has not been observed previously, greatly increasing the discovery phase space
COS/NUV/ACS/WFC/FUV 11658
Probing the Outer Regions of M31 with QSO Absorption Lines
We propose HST-COS spectroscopy of 10 quasars behind M31 Absorption lines due to MgII, FeII, CIV, and a variety of other lines will be searched for and measured Six quasars lie between 1 and 4 2 Holmberg radii near the major axis on the southwest side, where confusion with Milky Way gas is minimized Two lie even farther out on the southwest side of the major axis One lies within 1 Holmberg radius Two of the 10 pass through M31's high velocity clouds seen in a detailed 21 cm emission map Exposure time estimates were based on SDSS magnitudes and available GALEX magnitudes Thus, using the most well-studied external spiral galaxy in the sky, our observations will permit us to check, better than ever before, the standard picture that quasar metal-line absorption systems such as MgII and CIV arise in an extended gaseous halo/disk of a galaxy well beyond its observable optical radius The observations will yield insights into the nature of the gas and its connection to the very extended stellar components of M31 that have recently been studied Notably the observations have the potential of extending M31's rotation curve to very large galactocentric distances, thereby placing new constraints on M31's dark matter halo
Finally, we also request that the coordinated parallel orbits be allocated to this program so that we may image the resolved stellar content of M31's halo and outer disk
COS/NUV/FUV 11741
Probing Warm-Hot Intergalactic Gas at 0 5 < z < 1 3 with a Blind Survey for O VI, Ne VIII, Mg X, and Si XII Absorption Systems
Currently we can only account for half of the baryons (or less) expected to be found in the nearby universe based on D/H and CMB observations This "missing baryons problem" is one of the highest-priority challenges in observational extragalatic astronomy Cosmological simulations suggest that the baryons are hidden in low-density, shock-heated intergalactic gas in the log T = 5 - 7 range, but intensive UV and X-ray surveys using O VI, O VII, and O VIII absorption lines have not yet confirmed this prediction We propose to use COS to carry out a sensitive survey for Ne VIII and Mg X absorption in the spectra of nine QSOs at z(QSO) > 0 89 For the three highest-redshift QSOs, we will also search for Si XII This survey will provide more robust constraints on the quantity of baryons in warm-hot intergalactic gas at 0 5 < z < 1 3, and the data will provide rich constraints on the metal enrichment, physical conditions, and nature of a wide variety of QSO absorbers in addition to the warm-hot systems By comparing the results to other surveys at lower redshifts (with STIS, FUSE, and from the COS GTO programs), the project will also enable the first study of how these absorbers evolve with redshift at z < 1 By combining the program with follow-up galaxy redshift surveys, we will also push the study of galaxy-absorber relationships to higher redshifts, with an emphasis on the distribution of the WHIM with respect to the large-scale matter distribution of the universe
STIS/CCD 11845
CCD Dark Monitor Part 2
Monitor the darks for the STIS CCD
STIS/CCD 11847
CCD Bias Monitor-Part 2
Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1, and 1x1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns
STIS/CCD 11849
STIS CCD Hot Pixel Annealing
This purpose of this activity is to repair radiation induced hot pixel damage to the STIS CCD by warming the CCD to the ambient instrument temperature and annealing radiation-damaged pixels
Radiation damage creates hot pixels in the STIS CCD Detector Many of these hot pixels can be repaired by warming the CCD from its normal operating temperature near -83 deg C to the ambient instrument temperature (~ +5 deg C) for several hours The number of hot pixels repaired is a function of annealing temperature The effectiveness of the CCD hot pixel annealing process is assessed by measuring the dark current behavior before and after annealing and by searching for any window contamination effects
STIS/MA2 11862
MAMA NUV Flats
This program will obtain NUV-MAMA observations of the STIS internal Deuterium lamp to construct an NUV flat applicable to all NUV modes
WFC3/IR 11696
Infrared Survey of Star Formation Across Cosmic Time
We propose to use the unique power of WFC3 slitless spectroscopy to measure the evolution of cosmic star formation from the end of the reionization epoch at z>6 to the close of the galaxy-building era at z~0 3 Pure parallel observations with the grisms have proven to be efficient for identifying line emission from galaxies across a broad range of redshifts The G102 grism on WFC3 was designed to extend this capability to search for Ly-alpha emission from the first galaxies Using up to 250 orbits of pure parallel WFC3 spectroscopy, we will observe about 40 deep (4-5 orbit) fields with the combination of G102 and G141, and about 20 shallow (2-3 orbit) fields with G141 alone
Our primary science goals at the highest redshifts are: (1) Detect Lya
in ~100 galaxies with z>5
6 and measure the evolution of the Lya
luminosity function, independent of of cosmic variance; 2) Determine
the connection between emission line selected and continuum-break
selected galaxies at these high redshifts, and 3) Search for the
proposed signature of neutral hydrogen absorption at re-ionization
At
intermediate redshifts we will (4) Detect more than 1000 galaxies in
Halpha at 0
5 To identify single-line Lya emitters, we will exploit the wide
0
8--1
9um wavelength coverage of the combined G102+G141 spectra
All
[OII] and [OIII] interlopers detected in G102 will be reliably
separated from true LAEs by the detection of at least one strong line
in the G141 spectrum, without the need for any ancillary data
We
waive all proprietary rights to our data and will make high-level data
products available through the ST/ECF
WFC3/IR/ACS/WFC 11663 Formation and Evolution of Massive Galaxies in the Richest
Environments at 1
5 < z < 2
0 We propose to image seven 1
5 WFC3/IR/S/C 11929 IR Dark Current Monitor Analyses of ground test data showed that dark current signals are more
reliably removed from science data using darks taken with the same
exposure sequences as the science data, than with a single dark
current image scaled by desired exposure time
Therefore, dark current
images must be collected using all sample sequences that will be used
in science observations
These observations will be used to monitor
changes in the dark current of the WFC3-IR channel on a day-to-day
basis, and to build calibration dark current ramps for each of the
sample sequences to be used by Gos in Cycle 17
For each sample
sequence/array size combination, a median ramp will be created and
delivered to the calibration database system (CDBS)
WFC3/UV/IR 12234 Differentiation in the Kuiper belt: a Search for Silicates on Icy
Bodies
We currently have a large on-going program (Go Program 11644, 120
orbits) to exploit the superb stability and photometric
characteristics of HST and the broad range in wavelength coverage of
the WFC3 to make broad-band vis/IR spectral observations of a large
sample of Kuiper belt objects
Though the survey is currently only
~50% complete, the quality and unprecedented signal-to-noise of these
observations has revealed the existence of a previously undiscovered
spectral variability not explainable within our current understanding
of these objects
A possible explanation for this variability is that with this faint
set of Kuiper belt objects, we are beginning to see the difference
between larger differentiated objects and smaller non-differentiated
objects
Its seems that the small and likely undifferentiated objects
are exhibiting silicate features that affect our photometry - features
not exhibited by the icy mantles of larger icy bodies
We propose a small add-on survey to dramatically increase the
scientific results of our large program
The proposed observations
will use the proven capabilities of WFC3 to make broad and narrow-band
photometric observations to detect spectral features in the 1
0-1
3
micron range of a small subset of our sources
The 13 targets have
been carefully selected to cover the range of spectral variability
detected in our large program as well as sample the entire dynamical
range and physical sizes of these targets
These observations will
allow the identification of undifferentiated Kuiper belt objects by
detection of their silicate features
As a probe for differentiation,
these observations could constrain the natal locations of different
Kuiper belt classes, a constraint currently unavailable to formation
models
This small set of observations will allow the calibration of
the spectral variability seen in our large program, and drastically
enhance the scientific output of our full Cycle 17 sample
WFC3/UVIS 11905 WFC3 UVIS CCD Daily Monitor The behavior of the WFC3 UVIS CCD will be monitored daily with a set
of full-frame, four-amp bias and dark frames
A smaller set of 2Kx4K
subarray biases are acquired at less frequent intervals throughout the
cycle to support subarray science observations
The internals from
this proposal, along with those from the anneal procedure (Proposal
11909), will be used to generate the necessary superbias and superdark
reference files for the calibration pipeline (CDBS)
WFC3/UVIS 11908 Cycle 17: UVIS Bowtie Monitor Ground testing revealed an intermittent hysteresis type effect in the
UVIS detector (both CCDs) at the level of ~1%, lasting hours to days
Initially found via an unexpected bowtie- shaped feature in flatfield
ratios, subsequent lab tests on similar e2v devices have since shown
that it is also present as simply an overall offset across the entire
CCD, i
e
, a QE offset without any discernable pattern
These lab
tests have further revealed that overexposing the detector to count
levels several times full well fills the traps and effectively
neutralizes the bowtie
Each visit in this proposal acquires a set of
three 3x3 binned internal flatfields: the first unsaturated image will
be used to detect any bowtie, the second, highly exposed image will
neutralize the bowtie if it is present, and the final image will allow
for verification that the bowtie is gone
WFC3/UVIS/IR 11644 A Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into
the Formation of the Outer Solar System The eight planets overwhelmingly dominate the solar system by mass,
but their small numbers, coupled with their stochastic pasts, make it
impossible to construct a unique formation history from the dynamical
or compositional characteristics of them alone
In contrast, the huge
numbers of small bodies scattered throughout and even beyond the
planets, while insignificant by mass, provide an almost unlimited
number of probes of the statistical conditions, history, and
interactions in the solar system
To date, attempts to understand the
formation and evolution of the Kuiper Belt have largely been dynamical
simulations where a hypothesized starting condition is evolved under
the gravitational influence of the early giant planets and an attempt
is made to reproduce the current observed populations
With little
compositional information known for the real Kuiper Belt, the test
particles in the simulation are free to have any formation location
and history as long as they end at the correct point
Allowing
compositional information to guide and constrain the formation,
thermal, and collisional histories of these objects would add an
entire new dimension to our understanding of the evolution of the
outer solar system
While ground based compositional studies have hit
their flux limits already with only a few objects sampled, we propose
to exploit the new capabilities of WFC3 to perform the first ever
large-scale dynamical-compositional study of Kuiper Belt Objects
(KBOs) and their progeny to study the chemical, dynamical, and
collisional history of the region of the giant planets
The
sensitivity of the WFC3 observations will allow us to go up to two
magnitudes deeper than our ground based studies, allowing us the
capability of optimally selecting a target list for a large survey
rather than simply taking the few objects that can be measured, as we
have had to do to date
We have carefully constructed a sample of 120
objects which provides both overall breadth, for a general
understanding of these objects, plus a large enough number of objects
in the individual dynamical subclass to allow detailed comparison
between and within these groups
These objects will likely define the
core Kuiper Belt compositional sample for years to come
While we have
many specific results anticipated to come from this survey, as with
any project where the field is rich, our current knowledge level is
low, and a new instrument suddenly appears which can exploit vastly
larger segments of the population, the potential for discovery -- both
anticipated and not -- is extraordinary
==============================================================================
TOPIC: Daily Report #5177 == 1 of 1 ==
Date: Thurs, Sep 9 2010 8:23 am
From: "Cooper, Joe" HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science DAILY REPORT #5177 PERIOD COVERED: 5am September 8 - 5am September 9, 2010 (DOY 251/09:00z-252/09:00z) FLIGHT OPERATIONS SUMMARY: Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated
) HSTARS: 12384 - GSAcq(1,2,1) at 251/10:36:01 and REAcq(1,2,1) at 251/12:12:09z
and 251/13:48:00z all resulted in fine lock backup on FGS1
Observations possibly affected: STIS 26-29 Proposal ID#11668 & WFC3
74-75 Proposal ID#11912 12385 - REAcq(1,2,1) at 251/17:32:32z failed
Observations affected: COS 70-72 Proposal ID#11535; WFC3 76-77
Proposal ID#11914 12387 - GSAcq(1,2,1) at 252/05:38:36z Fails to RGA Hold, Search radius
Limit Exceeded on FGS1
Observations affected: ACS36-39 Proposal ID#12292 HSTAR FOR DOY 235 12386 - GSAcq(1,2,1) at 235/15:57:36 required three attempts to
achieve CT-DV on FGS1
The acquisition was successful
Observations possibly affected: STIS 11-13 Proposal ID#11847; COS 15
Proposal ID#11895; WFC3 9 Proposal ID#11638 COMPLETED OPS REQUEST: (None) COMPLETED OPS NOTES: (None) FGS GSAcq 8 7
FGS REAcq 7 6
OBAD with Maneuver 6 6 SIGNIFICANT EVENTS: (None) OBSERVATIONS SCHEDULED: ACS/WFC 11996 CCD Daily Monitor (Part 3) This program comprises basic tests for measuring the read noise and
dark current of the ACS WFC and for tracking the growth of hot pixels
The recorded frames are used to create bias and dark reference images
for science data reduction and calibration
This program will be
executed four days per week (Mon, Wed, Fri, Sun) for the duration of
Cycle 17
To facilitate scheduling, this program is split into three
proposals
This proposal covers 308 orbits (19
25 weeks) from 21 June
2010 to 1 November 2010
ACS/WFC 12210 SLACS for the Masses: Extending Strong Lensing to Lower Masses and
Smaller Radii Strong gravitational lensing provides the most accurate possible
measurement of mass in the central regions of early-type galaxies
(ETGs)
We propose to continue the highly productive Sloan Lens ACS
(SLACS) Survey for strong gravitational lens galaxies by observing a
substantial fraction of 135 new ETG gravitational-lens candidates with
HST-ACS WFC F814W Snapshot imaging
The proposed target sample has
been selected from the seventh and final data release of the Sloan
Digital Sky Survey, and is designed to complement the distribution of
previously confirmed SLACS lenses in lens-galaxy mass and in the ratio
of Einstein radius to optical half-light radius
The observations we
propose will lead to a combined SLACS sample covering nearly two
decades in mass, with dense mapping of enclosed mass as a function of
radius out to the half-light radius and beyond
With this longer mass
baseline, we will extend our lensing and dynamical analysis of the
mass structure and scaling relations of ETGs to galaxies of
significantly lower mass, and directly test for a transition in
structural and dark-matter content trends at intermediate galaxy mass
The broader mass coverage will also enable us to make a direct
connection to the structure of well-studied nearby ETGs as deduced
from dynamical modeling of their line-of-sight velocity distribution
fields
Finally, the combined sample will allow a more conclusive test
of the current SLACS result that the intrinsic scatter in ETG
mass-density structure is not significantly correlated with any other
galaxy observables
The final SLACS sample at the conclusion of this
program will comprise approximately 130 lenses with known foreground
and background redshifts, and is likely to be the largest confirmed
sample of strong-lens galaxies for many years to come
COS/NUV/FUV 11535 COS-GTO: Deep Search for an Oxygen Atmosphere on Callisto We plan a deep search for 1304? and 1356? O emission from Callisto, to
detect or place strong limits on the presence of a hypothesized O2
atmosphere on this moon (Liang et al
2005)
Tenuous oxygen
atmospheres on Europa and Ganymede have been detected by HST using
these emission lines, but searches for O emission from Callisto have
not been successful (Strobel et al
2002)
The Liang et al
models
predict O emission at levels comparable to the Strobel et al
upper
limit, so the improved sensitivity of COS may be able to detect the
emission, and thus Callisto's O2 atmosphere, for the first time
WFC3/UV 11638 Illuminating the HI Structure of a Proto-cluster Region at z=2
84 We propose very deep intermediate-band Lyman alpha imaging in the
field of a newly-discovered proto-cluster region surrounding the
extremely luminous QSO HS1549+19 at z=2
844
The large structure,
initially discovered in a spectroscopic survey of galaxies in fields
surrounding the brightest QSOs at z=2
5-2
8, represents an ideal
laboratory for studying the response of the intergalactic medium to a
source of ionizing photons that exceeds the UV background by factors STIS/CCD/MA 11668 Cosmo-chronometry and Elemental Abundance Distribution of the Ancient
Star HE1523-0901 We propose to obtain near-UV HST/STIS spectroscopy of the extremely
metal-poor, highly r-process-enhanced halo star HE 1523-0901, in order
to produce the most complete abundance distribution of the heaviest
stable elements, including platinum, osmium, and lead
These HST
abundance data will then be used to estimate the initial abundances of
the long-lived radioactive elements thorium and uranium, and by
comparison with their observed abundances, enable an accurate age
determination of this ancient star
The use of radioactive
chronometers in stars provides an independent lower limit on the age
of the Galaxy, which can be compared with alternative limits set by
globular clusters and by analysis from WMAP
Our proposed observations
of HE1523-0901 will also provide significant new information about the
early chemical history of the Galaxy, specifically, the nature of the
first generations of stars and the types of nucleosynthetic processes
that occurred at the onset of Galactic chemical evolution
STIS/CCD 11845 CCD Dark Monitor Part 2 Monitor the darks for the STIS CCD
STIS/CCD 11847 CCD Bias Monitor-Part 2 Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,
and 1x1 at gain = 4, to build up high-S/N superbiases and track the
evolution of hot columns
COS/FUV 11895 FUV Detector Dark Monitor Monitor the FUV detector dark rate by taking long science exposures
without illuminating the detector
The detector dark rate and spatial
distribution of counts will be compared to pre-launch and SMOV data in
order to verify the nominal operation of the detector
Variations of
count rate as a function of orbital position will be analyzed to find
dependence of dark rate on proximity to the SAA
Dependence of dark
rate as function of time will also be tracked
WFC3/IR 11738 SPIDERWEBS AND FLIES: OBSERVING MASSIVE GALAXY FORMATION IN ACTION Distant luminous radio galaxies are among the brightest known galaxies
in the early Universe, pinpoint likely progenitors of dominant cluster
galaxies and are unique laboratories for studying massive galaxy
formation
Spectacular images with the ACS and NICMOS of one such
object, the "Spiderweb Galaxy" at z = 2
2, show in exquisite detail,
hierarchical merging occurring 11 Gyr ago
By imaging 3 additional
Spiderweb-like galaxies we wish to study this potentially crucial
phase of massive galaxy evolution, when hierarchical merging, galaxy
downsizing and AGN feedback are all likely to be occurring
Properties
of the complete sample of Spiderweb galaxies will be used to (i)
constrain models for the formation and evolution of the most massive
galaxies that dominate rich clusters and (ii) investigate the nature
of chain and tadpole galaxies, a fundamental but poorly understood
constituent of the early Universe
We shall image rest-frame UV and optical continuum emission from 3
radio galaxies with 2
4 < z < 3
8 that appear clumpy and large in
shallow WFPC/PC observations
The new observations will typically
reach ~2 magnitudes fainter over 20-40 times larger area than
previously
Photometric and morphological parameters will be measured
for satellite galaxies ("flies") in the clumpy massive hosts and for
galaxies in ~ 1
5 Mpc x 1
5 Mpc regions of surrounding protoclusters
Locations, sizes, elongations, clumpiness, masses, and star formation
rates of the merging satellite and protocluster galaxies will be
compared with new state of the art simulations
Combination of ACS and
WFC3 images will help disentangle the properties of the young and old
populations
Specific goals include: (i) investigating star formation histories of
the satellite galaxies and the extended emission, (ii) studying
"downsizing" and merging scenarios and (iii) measuring the statistics
of linear galaxies and relating them to models for the formation of
massive galaxies and to the properties of the important but enigmatic
class of chain/tadpole galaxies in the HUDF
WFC3/IR 12181 The Atmospheric Structure of Giant Hot Exoplanets Characterization of close-in giant exoplanets has proceeded rapidly
over the past few years, due largely to Spitzer and HST observations
in transiting systems
Low resolution thermal emission spectra of over
two dozen planets have been measured by Spitzer, and HST observations
of a few key planets have indicated unusual molecular abundances via
transmission spectroscopy
However, current models for the atmospheric
structure of these worlds exhibit degeneracies wherein different
combinations of temperature and molecular abundance profiles can fit
the same Spitzer data for each planet
Fortunately, the advent of the
IR capability on HST/WFC3 allows us to solve this major problem in
exoplanet science
We propose to inaugurate a Large HST program that
is scientifically complementary to Spitzer, Kepler, and CoRoT
exoplanet results
We will obtain transmission spectroscopy of the 1
4-micron water band
in a sample of 13 planets, using the G141 grism on WFC3
Among the
abundant molecules, only water absorbs at this wavelength, and our
measurement of water abundance will enable us to break the
degeneracies in the Spitzer results with minimal model assumptions
We
will also use the G141 grism to observe secondary eclipses for 7 very
hot giant exoplanets at 1
5-microns, including several bright systems
in the Kepler and CoRoT fields
The strong temperature sensitivity of
the thermal continuum at 1
5-microns provides high leverage on
atmospheric temperature for these worlds, again helping to break
degeneracies in interpreting the Spitzer data
Moreover, our precise
eclipse photometry, in combination with extant Spitzer data, will
enable us to extrapolate the thermal continuum to optical wavelengths
Kepler and CoRoT teams will be thereby able to subtract the thermal
contribution from their increasingly precise measurements of optical
eclipses, and measure, or place extremely stringent limits on, the
albedo of these exotic worlds
WFC3/UV/IR 12234 Differentiation in the Kuiper belt: a Search for Silicates on Icy
Bodies
We currently have a large on-going program (Go Program 11644, 120
orbits) to exploit the superb stability and photometric
characteristics of HST and the broad range in wavelength coverage of
the WFC3 to make broad-band vis/IR spectral observations of a large
sample of Kuiper belt objects
Though the survey is currently only
~50% complete, the quality and unprecedented signal-to-noise of these
observations has revealed the existence of a previously undiscovered
spectral variability not explainable within our current understanding
of these objects
A possible explanation for this variability is that with this faint
set of Kuiper belt objects, we are beginning to see the difference
between larger differentiated objects and smaller non-differentiated
objects
Its seems that the small and likely undifferentiated objects
are exhibiting silicate features that affect our photometry - features
not exhibited by the icy mantles of larger icy bodies
We propose a small add-on survey to dramatically increase the
scientific results of our large program
The proposed observations
will use the proven capabilities of WFC3 to make broad and narrow-band
photometric observations to detect spectral features in the 1
0-1
3
micron range of a small subset of our sources
The 13 targets have
been carefully selected to cover the range of spectral variability
detected in our large program as well as sample the entire dynamical
range and physical sizes of these targets
These observations will
allow the identification of undifferentiated Kuiper belt objects by
detection of their silicate features
As a probe for differentiation,
these observations could constrain the natal locations of different
Kuiper belt classes, a constraint currently unavailable to formation
models
This small set of observations will allow the calibration of
the spectral variability seen in our large program, and drastically
enhance the scientific output of our full Cycle 17 sample
ACS/WFC 12292 SWELLS: Doubling the Number of Disk-dominated Edge-on Spiral Lens
Galaxies The formation of realistic disk galaxies within the LCDM cosmology is
still largely an unsolved problem
Theory is now beginning to make
predictions for how dark matter halos respond to galaxy formation, and
for the properties of disk galaxies
Measuring the density profiles of
dark matter halos on galaxy scales is therefore a strong test for the
standard paradigm of galaxy formation, offering great potential for
discovery
However, the degeneracy between the stellar and dark matter
contributions to galaxy rotation curves remains a major obstacle
Strong gravitational lensing, when combined with spatially resolved
kinematics and stellar population models, can solve this long-standing
problem
Unfortunately, this joint methodology could not be exploited
until recently due to the paucity of known edge-on spiral lenses
We
have developed and demonstrated an efficient technique to find exactly
these systems
During supplemental cycle-16 we discovered five new
spiral lens galaxies, suitable for rotation curve measurements
We
propose multi-color HST imaging of 16 candidates and 2
partially-imaged confirmed systems, to measure a sample of eight new
edge-on spiral lenses
This program will at least double the number of
known disk-dominated systems
This is crucial for constraining the
relative contribution of the disk, bulge and dark halo to the total
density profile
WFC3/UVIS 11905 WFC3 UVIS CCD Daily Monitor The behavior of the WFC3 UVIS CCD will be monitored daily with a set
of full-frame, four-amp bias and dark frames
A smaller set of 2Kx4K
subarray biases are acquired at less frequent intervals throughout the
cycle to support subarray science observations
The internals from
this proposal, along with those from the anneal procedure (Proposal
11909), will be used to generate the necessary superbias and superdark
reference files for the calibration pipeline (CDBS)
WFC3/UVIS 11912 UVIS Internal Flats This proposal will be used to assess the stability of the flat field
structure for the UVIS detector throughout the 15 months of Cycle 17
The data will be used to generate on-orbit updates for the delta-flat
field reference files used in the WFC3 calibration pipeline, if
significant changes in the flat structure are seen
WFC3/UVIS 11914 UVIS Earth Flats This program is an experimental path finder for Cycle 18 calibration
Visible-wavelength flat fields will be obtained by observing the dark
side of the Earth during periods of full moon illumination
The
observations will consist of full-frame streaked WFC3 UVIS imagery:
per 22- min total exposure time in a single "dark-sky" orbit, we
anticipate collecting 7000 e/pix in F606W or 4500 e/pix in F814W
To
achieve Poisson S/N > 100 per pixel, we require at least 2 orbits of
F606W and 3 orbits of F814W
For UVIS narrowband filters, exposures of 1 sec typically do not
saturate on the sunlit Earth, so we will take sunlit Earth flats for
three of the more-commonly used narrowband filters in Cycle 17 plus
the also-popular long-wavelength quad filters, for which we get four
filters at once
Why not use the Sunlit Earth for the wideband visible-light filters?
It is too bright in the visible for WFC3 UVIS minimum exposure time of
0
5 sec
Similarly, for NICMOS the sunlit-Earth is too bright which
saturates the detector too quickly and/or induces abnormal behaviors
such as super-shading (Gilmore 1998, NIC 098-011)
In the narrowband
visible and broadband near- UV is not too bright (predictions in Cox
et al
1987 "Standard Astronomical Sources for HST: 6
Spatially Flat
Fields
" and observations in ACS Program 10050)
Other possibilities? Cox et al
's Section II
D addresses many other
possible sources for flat fields, rejecting them for a variety of
reasons
A remaining possibility would be the totally eclipsed moon
Such eclipses provide approximately 2 hours (1 HST orbit) of
opportunity per year, so they are too rare to be generically useful
An advantage of the moon over the Earth is that the moon subtends less
than 0
25 square degree, whereas the Earth subtends a steradian or
more, so scattered light and light potentially leaking around the
shutter presents additional problems for the Earth
Also, we're unsure
if HST can point 180 deg from the Sun
============================================================================== You received this message because you are subscribed to the Google Groups "sci
astro
hubble"
group
To post to this group, visit http://groups
google
com/group/sci
astro
hubble?hl=en To unsubscribe from this group, send email to sci
astro
hubble+unsubscribe@googlegroups
com To change the way you get mail from this group, visit:
http://groups
google
com/group/sci
astro
hubble/subscribe?hl=en To report abuse, send email explaining the problem to abuse@googlegroups
com ==============================================================================
Google Groups: http://groups
google
com/?hl=en The following information is a reminder of your current mailing
list subscription: You are subscribed to the following list:
[list_name] using the following email:
example@example.com You may automatically unsubscribe from this list at any time by
visiting the following URL: https://aus-city
com/cgi-bin/dada/mail
cgi/u/HST_REPORTS/example/example
com/ If the above URL is inoperable, make sure that you have copied the
entire address
Some mail readers will wrap a long URL and thus break
this automatic unsubscribe mechanism
You may also change your subscription by visiting this list's main screen: <[program_url]/list/[list]> If you're still having trouble, please contact the list owner at: The following physical address is associated with this mailing list: [physical_address]=http://groups
google
com/group/sci
astro
hubble/t/ad5c0ea9c6dd693c?hl=en
SCHEDULED SUCCESSFUL
<mailto:[list_owner_email]>
This mailing list is announce-only.
HST Status Report list
Private list