Aug 31, 2006
Erica Hupp/Dwayne Brown Headquarters, Washington 202-358-1237/1726
Rob Gutro Goddard Space Flight Center, Greenbelt, Md 301-286-4044
RELEASE: 06-306
NASA STUDY SOLVES OCEAN PLANT MYSTERY
A NASA-sponsored study shows that by using a new technique, scientists can determine what limits the growth of ocean algae, or phytoplankton, and how this affects Earth's climate
Phytoplankton is a microscopic ocean plant and an important part of the ocean food chain By knowing what limits its growth scientists can better understand how ecosystems respond to climate change
The study focused on phytoplankton in the tropical Pacific Ocean It is an area of the ocean that plays a particularly important role in regulating atmospheric carbon dioxide and the world's climate This area of the ocean is the largest natural source of carbon dioxide to the atmosphere
"We concluded that nitrogen is the primary element missing for algae growth and photosynthesis in the northern portion of the tropical Pacific, while it was iron that was most lacking everywhere else," said Michael J Behrenfeld, an ocean plant ecologist from Oregon State University, Corvallis, Ore
Scientists determined when phytoplankton is stressed from lack of iron; it appears greener, or healthier than they really are Normally, greener plants are growing faster than less green plants When iron is lacking, enhanced greenness does not mean phytoplankton are growing better They are actually under stress and unhealthy These conclusions solved the mystery why healthy looking phytoplankton are actually not so healthy
"Because we didn't know about this effect of iron stress on the greenness of algae or phytoplankton before, we have always assumed that equally green waters were equally productive," Behrenfeld said "We now know this is not the case, and that we have to treat areas lacking iron differently "
For the tropical Pacific, correction for this "iron-effect" decreases scientists' estimates of how much carbon ocean plants photosynthesize for the region by roughly two billion tons This figure represents a tremendous amount of carbon that remains in the atmosphere that scientists previously thought were being removed
The results about the false health of phytoplankton allow scientists using computer models to re-create the movement of carbon around the world much more accurately Resource managers will become more knowledgeable about where carbon is going and the impact of recreational, industrial or commercial processes that use or produce carbon Researchers better understand the Earth as an ecosystem, and can incorporate these findings in future modeling, analysis and predictions
While satellite data from NASA's Sea-viewing Wide Field-of-view Sensor played an important part in the study, the real cornerstone of the discovery was ship-based measurements of fluorescence
Fluorescence occurs when plants absorb sunlight and some of that energy is given back off again as red light Scientists looked at approximately 140,000 measurements of fluorescence made from 1994 to 2006 along 36,040 miles of ship tracks They found that phytoplankton give off much more fluorescence when the plants do not have sufficient iron It is this signal they used to fingerprint what parts of the ocean are iron-stressed and what parts are nitrogen-stressed
It is important that scientists understand how ocean plants behave because all plants play a critical role in maintaining a healthy planet Plants annually take up billions of tons of carbon dioxide from the atmosphere through photosynthesis and use this carbon to create the food that nearly all other organisms on Earth depend on for life
Nutrients that make ocean plants thrive, such as nitrogen and phosphate, mostly come from the deep parts of the ocean, when water is mixed by the wind Iron also can come from dust blowing in the air
Approximately half of the photosynthesis on Earth occurs in the oceans, and the remainder on land Ocean and land plants share the same basic requirements for photosynthesis and growth These requirements include water, light and nutrients When these three are abundant, plants are abundant When any one of them is missing, plants suffer
An article on this technique appears in a recent issue of Nature For images related to this research, visit:
http://www nasa gov/centers/goddard/news/topstory/2006/mystery_plants html
-end-
To subscribe to the list, send a message to: hqnews-subscribe@mediaservices nasa gov To remove your address from the list, send a message to: hqnews-unsubscribe@mediaservices nasa gov
The following information is a reminder of your current mailing list subscription:
You are subscribed to the following list: [list_name]
using the following email: BULK_EMAIL
You may automatically unsubscribe from this list at any time by visiting the following URL:
http://www aus-city com/cgi-bin/dada/mail cgi/u/[list]/
If the above URL is inoperable, make sure that you have copied the entire address Some mail readers will wrap a long URL and thus break this automatic unsubscribe mechanism
You may also change your subscription by visiting this list's main screen:
http://www aus-city com/cgi-bin/dada/mail cgi/list/[list]
If you're still having trouble, please contact the list owner at:
<mailto:list
admin@aus-city
com>
The following physical address is associated with this mailing list:
http://www aus-city com
This mailing list is announce-only.
NASA Reports list
Private list