Notice: For the foreseeable future, the daily reports may
contain
apparent discrepancies between some proposal descriptions
and the listed
instrument usage. This is due to the conversion of
previously approved
ACS WFC or HRC observations into WFPC2, or NICMOS
observations
subsequent to the loss of ACS CCD science capability in
late January.
HUBBLE SPACE TELESCOPE - Continuing to collect World Class
Science
DAILY REPORT # 4336
PERIOD COVERED: UT April 07,08,09, 2007 (DOY 096,097,098)
OBSERVATIONS SCHEDULED
NIC1/NIC2/NIC3 8795
NICMOS Post-SAA calibration - CR Persistence Part 6
A new proceedure proposed to alleviate the CR-persistence
problem of
NICMOS. Dark frames will be obtained immediately upon
exiting the SAA
contour 23, and everytime a NICMOS exposure is scheduled
within 50
minutes of coming out of the SAA. The darks will be
obtained in parallel
in all three NICMOS Cameras. The POST-SAA darks will be
non- standard
reference files available to users with a USEAFTER
date/time mark. The
keyword 'USEAFTER=date/time' will also be added to the
header of each
POST-SAA DARK frame. The keyword must be populated with
the time, in
addition to the date, because HST crosses the SAA ~8 times
per day so
each POST-SAA DARK will need to have the appropriate time
specified, for
users to identify the ones they need. Both the raw and
processed images
will be archived as POST-SAA DARKSs. Generally we expect
that all NICMOS
science/calibration observations started within 50 minutes
of leaving an
SAA will need such maps to remove the CR persistence from
the science i
mages. Each observation will need its own CRMAP, as
different SAA
passages leave different imprints on the NICMOS detectors.
NIC3 11082
NICMOS Imaging of GOODS: Probing the Evolution of the
Earliest Massive
Galaxies, Galaxies Beyond
Deep near-infrared imaging provides the only avenue
towards
understanding a host of astrophysical problems, including:
finding
galaxies and AGN at z > 7, the evolution of the most
massive galaxies,
the triggering of star formation in dusty galaxies, and revealing
properties of obscured AGN. As such, we propose to observe
60 selected
areas of the GOODS North and South fields with NICMOS
Camera 3 in the
F160W band pointed at known massive M > 10^11 M_0
galaxies at z > 2
discovered through deep Spitzer imaging. The depth we will
reach {26.5
AB at 5 sigma} in H_160 allows us to study the internal
properties of
these galaxies, including their sizes and morphologies,
and to
understand how scaling relations such as the Kormendy
relationship
evolved. Although NIC3 is out of focus and undersampled,
it is currently
our best opportunity to study these galaxies, while also
sampling enough
area to perform a general NIR survey 1/3 the size of an
ACS GOODS field.
These data will be a significant resource, invaluable for
many other
science goals, including discovering high redshift
galaxies at z > 7,
the evolution of galaxies onto the Hubble sequence, as
well as examining
obscured AGN and dusty star formation at z > 1.5. The
GOODS fields are
the natural location for HST to perform a deep NICMOS
imaging program,
as extensive data from space and ground based
observatories such as
Chandra, GALEX, Spitzer, NOAO, Keck, Subaru, VLT, JCMT,
and the VLA are
currently available for these regions. Deep
high-resolution
near-infrared observations are the one missing ingredient
to this
survey, filling in an important gap to create the deepest,
largest, and
most uniform data set for studying the faint and distant
universe. The
importance of these images will increase with time as new
facilities
come on line, most notably WFC3 and ALMA, and for the
planning of future
JWST observations.
WFPC2 11079
Treasury Imaging of Star Forming Regions in the Local
Group:
Complementing the GALEX and NOAO Surveys
We propose to use WFPC2 to image the most interesting
star-forming
regions in the Local Group galaxies, to resolve their
young stellar
populations. We will use a set of filters including F170W,
which is
critical to detect and characterize the most massive stars,
to whose hot
temperatures colors at longer wavelengths are not
sensitive. WFPC2's
field of view ideally matches the typical size of the
star-forming
regions, and its spatial resolution allows us to measure
indvidual
stars, given the proximity of these galaxies. The
resulting H- R
diagrams will enable studies of star-formation properties
in these
regions, which cover largely differing metallicities {a
factor of 17,
compared to the factor of 4 explored so far} and
characteristics. The
results will further our understanding of the
star-formation process, of
the interplay between massive stars and environment, the
properties of
dust, and will provide the key to interpret integrated
measurements of
star-formation indicators {UV, IR, Halpha} available for several
hundreds more distant galaxies. Our recent deep surveys of
these
galaxies with GALEX {FUV, NUV} and ground-based imaging
{UBVRI, Halpha,
[OIII] and [SII]} provided the identification of the most
relevant SF
sites. In addition to our scientific analysis, we will
provide catalogs
of HST photometry in 6 bands, matched corollary
ground-based data, and
UV, Halpha and IR integrated measurements of the
associations, for
comparison of integrated star-formation indices to the
resolved
populations. We envisage an EPO component.
WFPC2 11022
WFPC2 Cycle 15 Decontaminations and Associated
Observations
This proposal is for the WFPC2 decons. Also included are
instrument
monitors tied to decons: photometric stability check,
focus monitor,
pre- and post-decon internals {bias, intflats, kspots,
& darks}, UV
throughput check, VISFLAT sweep, and internal UV flat
check.
FGS 10989
Astrometric Masses of Extrasolar Planets and Brown Dwarfs
We propose observations with HST/FGS to estimate the astrometric
elements {perturbation orbit semi-major axis and
inclination} of
extra-solar planets orbiting six stars. These companions
were originally
detected by radial velocity techniques. We have
demonstrated that FGS
astrometry of even a short segment of reflex motion, when
combined with
extensive radial velocity information, can yield useful
inclination
information {McArthur et al. 2004}, allowing us to
determine companion
masses. Extrasolar planet masses assist in two ongoing
research
frontiers. First, they provide useful boundary conditions
for models of
planetary formation and evolution of planetary systems.
Second, knowing
that a star in fact has a plantary mass companion,
increases the value
of that system to future extrasolar planet observation missions
such as
SIM PlanetQuest, TPF, and GAIA.
WFPC2 10890
Morphologies of the Most Extreme High-Redshift
Mid-IR-Luminous Galaxies
The formative phase of the most massive galaxies may be
extremely
luminous, characterized by intense star- and
AGN-formation. Till now,
few such galaxies have been unambiguously identified at
high redshift,
restricting us to the study of low-redshift ultraluminous
infrared
galaxies as possible analogs. We have recently discovered
a sample of
objects which may indeed represent this early phase in
galaxy formation,
and are undertaking an extensive multiwavelength study of
this
population. These objects are bright at mid-IR wavelengths
{F[24um]>0.8mJy}, but deep ground based imaging
suggests extremely faint
{and in some cases extended} optical counterparts
{R~24-27}. Deep K-band
images show barely resolved galaxies. Mid-infrared
spectroscopy with
Spitzer/IRS reveals that they have redshifts z ~ 2-2.5,
suggesting
bolometric luminosities ~10^{13-14}Lsun! We propose to
obtain deep ACS
F814W and NIC2 F160W images of these sources and their
environs in order
to determine kpc-scale morphologies and surface photometry
for these
galaxies. The proposed observations will help us determine
whether these
extreme objects are merging systems, massive obscured
starbursts {with
obscuration on kpc scales!} or very reddened {locally
obscured} AGN
hosted by intrinsically low-luminosity galaxies.
WFPC2 10886
The Sloan Lens ACS Survey: Towards 100 New Strong Lenses
As a continuation of the highly successful Sloan Lens ACS
{SLACS} Survey
for new strong gravitational lenses, we propose one orbit
of ACS-WFC
F814W imaging for each of 50 high-probability strong
galaxy-galaxy lens
candidates. These observations will confirm new lens
systems and permit
immediate and accurate photometry, shape measurement, and
mass modeling
of the lens galaxies. The lenses delivered by the SLACS
Survey all show
extended source structure, furnishing more constraints on
the projected
lens potential than lensed-quasar image positions. In
addition, SLACS
lenses have lens galaxies that are much brighter than
their lensed
sources, facilitating detailed photometric and dynamical
observation of
the former. When confirmed lenses from this proposal are
combined with
lenses discovered by SLACS in Cycles 13 and 14, we expect
the final
SLACS lens sample to number 80--100: an approximate
doubling of the
number of known galaxy-scale strong gravitational lenses
and an
order-of-magnitude increase in the number of optical
Einstein rings. By
virtue of its homogeneous selection and sheer size, the
SLACS sample
will allow an unprecedented exploration of the mass
structure of the
early-type galaxy population as a function of all other
observable
quantities. This new sample will be a valuable resource to
the
astronomical community by enabling qualitatively new
strong lensing
science, and as such we will waive all but a short
{3-month} proprietary
period on the observations.
WFPC2 10880
The host galaxies of QSO2s: AGN feeding and evolution at
high
luminosities
Now that the presence of supermassive black holes in the
nuclei of
galaxies is a well established fact, other questions
related to the AGN
phenomena still have to be answered. Problems of
particular interest are
how the AGN gets fed, how the black hole evolves and how
the evolution
of the black hole is related to the evolution of the
galaxy bulge. Here
we propose to address some of these issues using ACS/WFC +
F775W
snapshot images of 73 QSO2s with redshifts in the range
0.3<z<0.4. These
observations will be combined with similar archival data
of QSO1s and
ground based data of Seyfert and normal galaxies. First,
we will
intestigate whether interactions are the most important
feeding
mechanism in high luminosity AGNs. This will be done in a
quantitative
way, comparing the asymmetry indices of QSO2 hosts with
those of lower
luminosity AGNs and normal galaxies. Second, we will do a
detailed study
of the morphology of the host galaxies of both QSO types,
to determine
if they are similar, or if there is an evolutionary trend
from QSO2s to
QSO1s. The results from this project will represent an
important step in
the understanding of AGN evolution, and may also introduce
a substantial
modification to the Unified Model.
ACS/SBC 10872
Lyman Continuum Emission in Galaxies at z=1.2
Lyman continuum photons produced in massive starbursts may
have played a
dominant role in the reionization of the Universe.
Starbursts are
important contributors to the ionizing metagalactic
background at lower
redshifts as well. However, their contribution to the
background depends
upon the fraction of ionizing radiation that escapes from
the intrinsic
opacity of galaxies below the Lyman limit. Current surveys
suggest
escape fractions of a few percent, up to 10%, with very
few detections
{as opposed to upper limits} having been reported. No
detections have
been reported in the epochs between z=0.1 and z=2. We
propose to measure
the fraction of escaping Lyman continuum radiation from 15
luminous
z~1.2 galaxies in the GOODS fields. Using the tremendous
sensitivity of
the ACS Solar- blind Channel, we will reach AB=30 mag.,
allowing us to
detect an escape fraction of 1%. We will correlate the
amount of
escaping radiation with the photometric and morphological
properties of
the galaxies. A non-detection in all sources would imply
that QSOs
provide the overwhelming majority of ionizing radiation at
z=1.3, and it
would strongly indicate that the properties of galaxies at
higher
redshift have to be significantly different for galaxies
to dominate
reionization. The deep FUV images will also be useful for
extending the
FUV study of other galaxies in the GOODS fields.
NIC1 10859
Precise Measurements of Sgr A* Flare Activity
Correlated X-ray and near-IR flare emission from Sgr A*,
the closest
supermassive black hole, contains information about the
hydrodynamics,
energetics, and accretion behavior of matter within the
innermost ten
Schwarzschild radii of the hole. We propose HST/NICMOS
observations of
near-IR flares, in conjunction with already approved
obsrevations using
XMM-Newton {214 ksec} and CSO {3 nights}, which can make
the precise,
new measurements necessary to understand the radiation
mechanism and low
luminosity of Sgr A*. HST/NICMOS is required due to its
very low and
stable background, and its stable, tightly focused PSF,
which allow
accurate measurement of fainter flares than can be
observed using
groundbased adaptive optics systems. We will measure the
spectral index
distribution, the time-averaged flux and duration of
flares, and the
statistics of flare activity, and will confirm previously
reported
quasi-periodic variability. These measurements will have
far-reaching
implications for testing the inverse Compton scattering {ICS} and
synchrotron models of low-luminosity flares, for
understanding the
process of accretion onto and outflow from supermassive
black holes, and
for constraining the acceleration mechanism of flares and
the inferred
black hole spin. This knowledge, in turn, will help us
understand more
generally low-luminosity AGN and X-ray binaries in a very
low/quiescent
accretion state.
WFPC2 10786
Rotational state and composition of Pluto's outer
satellites
We propose an intricate set of observations aimed at
discovering the
rotational state of the newly discovered satellites of
Pluto, S/2005 P1
and S/2005 P2. These observations will indicate if the
satellites are in
synchronous rotation or not. If they are not, then the
observations will
determine the rotational period or provide tight
constraints on the
amplitude. The other primary goal is to extend the
wavelength coverage
of the colors of the surface and allow us to constrain the
surface
compositions of both objects. From these data we will also
be able to
significantly improve the orbits of P1 and P2, improve the
measurement
of the bulk density of Charon, and search for albedo
changes on the
surface of Pluto.
NIC2 10599
Multi-color imaging of two 1 Gyr old debris disks within
20 pc of the
Sun: Astrophysical mirrors of our Kuiper Belt
We report the first scattered light detections of two
debris disk around
an F star and a K star using optical coronagraphy and the
Hubble Space
Telescope. With ages ~1 Gyr, these are the oldest debris
disks thus far
seen in the optical. We propose deep, multi-roll angle
coronagraphic
imaging with HST ACS and NICMOS to confirm and
characterize the disks in
terms of structure and composition. The disks appear to
have belt-like
morphology that is consistent with the existence of
planetary companions
or other perturbing bodies. Since these disks are close to
our Kuiper
Belt in an evolutionary context, detailed understanding of
their mass,
structure and composition will provide a fresh perspective
for inferring
the history and properties of our own trans-Neptunian
region.
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are
preliminary reports
of potential non-nominal performance that will be
investigated.)
HSTARS:
10769 - GSAcq (1,2,2) failed to RGA control
At AOS 096/10:05:16 GSAcq (1,2,2) scheduled
from 096/08:38:21-08:45:41
had failed to RGA control (Gyro Hold) due to
QSTOP flag on FGS 1.
OBAD MAP: V1 107.01, V2 -402.65, V3 -335.62,
RSS 535.02
(This failure occurred during an LOS in the
previous reporting period @
096/08:38:21z, and so is not counted as a
failure for this reporting
period.)
10770 - GSAcq(1,3,3) failed to RGA Hold (Gyro Control)
Upon acquisition of signal at 098/19:24:30, the
GSAcq(1,3,3) scheduled
at 098/19:15:04 - 19:23:09 had failed to RGA
Hold due to (QF1STOPF) stop
flag indication on FGS1. Pre-acquisition OBADs
(RSS) attitude correction
values not available due to LOS. Post-acq
OBAD/MAP had (RSS) value of
18.13 arcseconds.
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL
FGS GSacq 27 26
FGS REacq 10 10
OBAD with Maneuver 76 76
SIGNIFICANT EVENTS: (None)