HUBBLE
SPACE TELESCOPE - Continuing to collect World Class Science
DAILY
REPORT # 4563
PERIOD
COVERED: UT March 07,08,09, 2008 (DOY 067,068,069)
OBSERVATIONS
SCHEDULED
NIC1/NIC2/NIC3
8795
NICMOS Post-SAA calibration - CR Persistence Part 6
A
new procedure proposed to alleviate the CR-persistence problem of
NICMOS.
Dark frames will be obtained immediately upon exiting the SAA
contour
23, and every time a NICMOS exposure is scheduled within 50
minutes
of coming out of the SAA. The darks will be obtained in parallel
in
all three NICMOS Cameras. The POST-SAA darks will be non-standard
reference
files available to users with a USEAFTER date/time mark. The
keyword
'USEAFTER=date/time' will also be added to the header of each
POST-SAA
DARK frame. The keyword must be populated with the time, in
addition
to the date, because HST crosses the SAA ~8 times per day so
each
POST-SAA DARK will need to have the appropriate time specified, for
users
to identify the ones they need. Both the raw and processed images
will
be archived as POST-SAA DARKSs. Generally we expect that all NICMOS
science/calibration
observations started within 50 minutes of leaving an
SAA
will need such maps to remove the CR persistence from the science i
mages.
Each observation will need its own CRMAP, as different SAA
passages
leave different imprints on the NICMOS detectors.
WFPC2
11235
HST
NICMOS Survey of the Nuclear Regions of Luminous Infrared Galaxies
in
the Local Universe
At
luminosities above 10^11.4 L_sun, the space density of far-infrared
selected
galaxies exceeds that of optically selected galaxies. These
`luminous
infrared galaxies' {LIRGs} are primarily interacting or
merging
disk galaxies undergoing enhanced star formation and Active
Galactic
Nuclei {AGN} activity, possibly triggered as the objects
transform
into massive S0 and elliptical merger remnants. We propose
NICMOS
NIC2 imaging of the nuclear regions of a complete sample of 88
L_IR
> 10^11.4 L_sun luminous infrared galaxies in the IRAS Revised
Bright
Galaxy Sample {RBGS: i.e., 60 micron flux density > 5.24 Jy}.
This
sample is ideal not only in its completeness and sample size, but
also
in the proximity and brightness of the galaxies. The superb
sensitivity
and resolution of NICMOS NIC2 on HST enables a unique
opportunity
to study the detailed structure of the nuclear regions,
where
dust obscuration may mask star clusters, AGN and additional nuclei
from
optical view, with a resolution significantly higher than possible
with
Spitzer IRAC. This survey thus provides a crucial component to our
study
of the dynamics and evolution of IR galaxies presently underway
with
Wide-Field, HST ACS/WFC and Spitzer IRAC observations of these 88
galaxies.
Imaging will be done with the F160W filter {H-band} to examine
as
a function of both luminosity and merger stage {i} the luminosity and
distribution
of embedded star clusters, {ii} the presence of optically
obscured
AGN and nuclei, {iii} the correlation between the distribution
of
1.6 micron emission and the mid- IR emission as detected by Spitzer
IRAC,
{iv} the evidence of bars or bridges that may funnel fuel into the
nuclear
region, and {v} the ages of star clusters for which photometry
is
available via ACS/WFC observations. The NICMOS data, combined with
the
HST ACS, Spitzer, and GALEX observations of this sample, will result
in
the most comprehensive study of merging and interacting galaxies to
date.
FGS
11212
Filling
the Period Gap for Massive Binaries
The
current census of binaries among the massive O-type stars is
seriously
incomplete for systems in the period range from years to
millennia
because the radial velocity variations are too small and the
angular
separations too close for easy detection. Here we propose to
discover
binaries in this observational gap through a Faint Guidance
Sensor
SNAP survey of relatively bright targets listed in the Galactic O
Star
Catalog. Our primary goal is to determine the binary frequency
among
those in the cluster/association, field, and runaway groups. The
results
will help us assess the role of binaries in massive star
formation
and in the processes that lead to the ejection of massive
stars
from their natal clusters. The program will also lead to the
identification
of new, close binaries that will be targets of long term
spectroscopic
and high angular resolution observations to determine
their
masses and distances. The results will also be important for the
interpretation
of the spectra of suspected and newly identified binary
and
multiple systems.
FGS
11211
An
Astrometric Calibration of Population II Distance Indicators
In
2002 HST produced a highly precise parallax for RR Lyrae. That
measurement
resulted in an absolute magnitude, M{V}= 0.61+/-0.11, a
useful
result, judged by the over ten refereed citations each year
since.
It is, however, unsatisfactory to have the direct,
parallax-based,
distance scale of Population II variables based on a
single
star. We propose, therefore, to obtain the parallaxes of four
additional
RR Lyrae stars and two Population II Cepheids, or W Vir
stars.
The Population II Cepheids lie with the RR Lyrae stars on a
common
K-band Period-Luminosity relation. Using these parallaxes to
inform
that relationship, we anticipate a zero-point error of 0.04
magnitude.
This result should greatly strengthen confidence in the
Population
II distance scale and increase our understanding of RR Lyrae
star
and Pop II Cepheid astrophysics.
FGS
11210
The
Architecture of Exoplanetary Systems
Are
all planetary systems coplanar? Concordance cosmogony makes that
prediction.
It is, however, a prediction of extrasolar planetary system
architecture
as yet untested by direct observation for main sequence
stars
other than the Sun. To provide such a test, we propose to carry
out
FGS astrometric studies on four stars hosting seven companions. Our
understanding
of the planet formation process will grow as we match not
only
system architecture, but formed planet mass and true distance from
the
primary with host star characteristics for a wide variety of host
stars
and exoplanet masses. We propose that a series of FGS astrometric
observations
with demonstrated 1 millisecond of arc per-observation
precision
can establish the degree of coplanarity and component true
masses
for four extrasolar systems: HD 202206 {brown dwarf+planet}; HD
128311
{planet+planet}, HD 160691 = mu Arae {planet+planet}, and HD
222404AB
= gamma Cephei {planet+star}. In each case the companion is
identified
as such by assuming that the minimum mass is the actual mass.
For
the last target, a known stellar binary system, the companion orbit
is
stable only if coplanar with the AB binary orbit.
WFPC2
11206
At
the cradle of the Milky Way: Formation of the most massive field disk
galaxies
at z>1
We
propose to obtain 2 orbit WFPC2 F814W images of a sample of the 15
most
massive galaxies found at $1 < z < 1.3$. These were culled from
over
20,000 Keck spectra collected as part of DEEP and are unique among
high
redshift massive galaxy samples in being kinematically selected.
Through
a recent HST NICMOS-2 imaging program {GO-10532}, we have
confirmed
that these galaxies have regular stellar disks, and their
emission
line kinematics are not due to gradients from merging
components.
These potentially very young galaxies are likely precursors
to
massive local disks, assuming no further merging. The proposed WFPC2
and
existing NIC-2 data provide colors, stellar masses, and ages of
bulge
and disk subcomponents, to assess whether old stellar bulges and
disks
are in place at that time or still being built, and constrain
their
formation epochs. Finally, this sample will yield the first
statistically
significant results on the $z > 1$ evolution of the
size-velocity-luminosity
scaling relations, for massive galaxies at
different
wavelengths, and constrain whether this evolution reflects
stellar
mass growth, or passive evolution, of either bulge or disk
components.
WFPC2
11180
The
Morphology of the Post-Red Supergiant IRC+10420's Circumstellar
Ejecta
The
extremely luminous post-red supergiant and powerful OH/IR source IRC
+10420
is surrounded by a complex circumstellar nebula. Numerous small
condensations,
arcs, jet-like rays of knots, and intriguing
semi-circular
structures are easily visible in our previous WFPC2
images.
We have suggested that these spatially recognizable features may
be
evidence for episodic mass loss events possibly from localized active
regions.
We now propose to obtain second epoch WFPC2 images with the
Planetary
Camera to measure the transverse motions of these ejecta.
Spatially
resolved spectra from STIS showed that the embedded arcs are
kinematically
distinct from the spherically expanding diffuse
nebulosity.
The transverse motions in combination with radial velocities
from
the STIS spectra, will let us determine the morphology of IRC
+10420's
nebula and the structures embedded in it, its mass loss
history,
and provide clues to the mass loss mechanism responsible for
the
discrete ejections.
NIC2
11168
The
IMF in the Hidden Galactic Starburst W49A
W49A
is one of the most luminous and prolific massive star formation
regions
in the disk of our Milky Way. Given the presence of several very
massive
OB clusters as well as an unusually high
concentration of many
young
ultra-compact HII regions (UCHIIR) -- all embedded in about 1
million
solar masses of molecular gas -- it is arguably the best
Galactic
template for a luminous starburst region. We propose to obtain
NICMOS
imaging of the central part of W49A, covering a strip from the
central,
massive OB cluster to the ring of UCHIIRs. Our
goals are to
resolve
and characterize the central star cluster and determine its IMF
down
to about 1 solar mass. We want to characterize the distribution of
intermediate-mass
YSOs, and identify the NIR counterparts to the
UCHIIRs.
The combination of the proposed HST/NICMOS data with our
recently
obtained Spitzer observations would allow a great step forward
in
the understanding of massive star and cluster formation.
NIC2
11157
NICMOS
Imaging Survey of Dusty Debris Around Nearby Stars Across the
Stellar
Mass Spectrum
Association
of planetary systems with dusty debris disks is now quite
secure,
and advances in our understanding of planet formation and
evolution
can be achieved by the identification and characterization of
an
ensemble of debris disks orbiting a range of central stars with
different
masses and ages. Imaging debris disks in starlight scattered
by
dust grains remains technically challenging so that only about a
dozen
systems have thus far been imaged. A further advance in this field
needs
an increased number of imaged debris disks. However, the technical
challenge
of such observations, even with the superb combination of HST
and
NICMOS, requires the best targets. Recent HST imaging investigations
of
debris disks were sample-limited not limited by the technology used.
We
performed a search for debris disks from a IRAS/Hipparcos cross
correlation
which involved an exhaustive background contamination check
to
weed out false excess stars. Out of ~140 identified debris disks, we
selected
22 best targets in terms of dust optical depth and disk angular
size.
Our target sample represents the best currently available target
set
in terms of both disk brightness and resolvability. For example, our
targets
have higher dust optical depth, in general, than newly
identified
Spitzer disks. Also, our targets cover a wider range of
central
star ages and masses than previous debris disk surveys. This
will
help us to investigate planetary system formation and evolution
across
the stellar mass spectrum. The technical feasibility of this
program
in two-gyro mode guiding has been proven with on-orbit
calibration
and science observations during HST cycles 13, 14, and 15.
ACS/SBC
11154
Optical-UV
Spectrum of the Middle-aged Pulsar B1055-52
The
middle-aged radio, X-ray and gamma-ray pulsar B1055-52 is one of the
few
pulsars that allow a multiwavelength study of pulsar radiation. An
optical
counterpart of the pulsar has been detected with the HST FOC,
but
it was observed in only one filter (F342W, m=24.9). To understand
the
nature of the pulsar radiation, its spectrum must be measured in a
broad
wavelength range. We propose imaging observations of the pulsar's
counterpart
with WFPC2 in the red part of the spectrum and ACS/SBC in
the
UV part to measure the broadband spectral distribution, compare it
with
the X-ray spectrum, and investigate the thermal and magnetospheric
components
of the pulsar's radiation.
WFPC2
11138
The
Physics of the Jets of Powerful Radio Galaxies and Quasars
We
propose to obtain HST polarimetry of the jets of the quasars 1150+497
and
PKS 1136-135. Our goal is to solve the riddle of their high-energy
emission
mechanism, and tackle issues such as particle acceleration and
jet
dynamics. Our targets are the optically brightest quasar jets, and
they
span the range of luminosities and beaming parameters seen in these
objects.
Recent observations with Spitzer, HST and Chandra have shed new
light
on the spectral morphology of quasar jets, throwing wide open the
question
of the nature of their optical and X-ray emission. Three
mechanisms
are possible, including synchrotron emission as well as two
Comptonization
processes. Polarimetry can uniquely determine which of
these
mechanisms operates in the optical. We will compare the optical
polarimetry
to in- hand radio polarimetry as well as in-hand and new
Spitzer,
HST and Chandra imaging to gain new insights on the structure
of
these jets, as well as particle acceleration mechanisms and jet
dynamics.
WFPC2
11124
The
Origin of QSO Absorption Lines from QSOs
We
propose using WFPC2 to image the fields of 10 redshift z ~ 0.7
foreground
{FG} QSOs which lie within ~29-151 kpc of the sightlines to
high-z
background {BG} QSOs. A surprisingly high fraction of the BG QSO
spectra
show strong MgII {2796,2803} absorption lines at precisely the
same
redshifts as the FG QSOs. The high resolution capabilities of WFPC2
are
needed to understand the origin of these absorption systems, in two
ways.
First, we wish to explore the FG QSO environment as close as
possible
to the position of the BG QSO, to search for interloping group
or
cluster galaxies which might be responsible for the absorption, or
irregularly
shaped post-merger debris between the FG and BG QSO which
may
indicate the presence of large amount of disrupted gas along a
sightline.
Similarly, high resolution images are needed to search for
signs
of tidal interactions between any galaxies which might be found
close
to the FG QSO. Such features might provide evidence of young
merging
events causing the start of QSO duty cycles and producing
outflows
from the central AGN. Such winds may be responsible for the
observed
absorption lines. Second, we seek to measure the intrinsic
parameters
of the FG QSO host galaxy, such as luminosity and morphology,
to
correlate with the properties of the MgII absorption lines. We wish
to
observe each field through the F814W filter, close to the rest- frame
B-band
of the FG QSO. These blue data can reveal enhanced star formation
regions
close to the nucleus of the host galaxy, which may be indicative
of
galaxy mergers with the FG QSO host. The FG QSO environment offers
quite
a different set of phenomena which might be responsible for MgII
absorption,
providing an important comparison to studies of MgII
absorption
from regular field galaxies.
WFPC2
11113
Binaries
in the Kuiper Belt: Probes of Solar System Formation and
Evolution
The
discovery of binaries in the Kuiper Belt and related small body
populations
is powering a revolutionary step forward in the study of
this
remote region. Three quarters of the known binaries in the Kuiper
Belt
have been discovered with HST, most by our snapshot surveys. The
statistics
derived from this work are beginning to yield surprising and
unexpected
results. We have found a strong concentration of binaries
among
low-inclination Classicals, a possible size cutoff to binaries
among
the Centaurs, an apparent preference for nearly equal mass
binaries,
and a strong increase in the number of binaries at small
separations.
We propose to continue this successful program in Cycle 16;
we
expect to discover at least 13 new binary systems, targeted to
subgroups
where these discoveries can have the greatest impact.
NIC3
11107
Imaging
of Local Lyman Break Galaxy Analogs: New Clues to Galaxy
Formation
in the Early Universe
We
have used the ultraviolet all-sky imaging survey currently being
conducted
by the Galaxy Evolution Explorer {GALEX} to identify for the
first
time a rare population of low-redshift starbursts with properties
remarkably
similar to high-redshift Lyman Break Galaxies {LBGs}. These
"compact
UV luminous galaxies" {UVLGs} resemble LBGs in terms of size,
SFR,
surface brightness, mass, metallicity, kinematics, dust, and color.
The
UVLG sample offers the unique opportunity of investigating some very
important
properties of LBGs that have remained virtually inaccessible
at
high redshift: their morphology and the mechanism that drives their
star
formation. Therefore, in Cycle 15 we have imaged 7 UVLGs using ACS
in
order to 1} characterize their morphology and look for signs of
interactions
and mergers, and 2} probe their star formation histories
over
a variety of timescales. The images show a striking trend of small-
scale
mergers turning large amounts of gas into vigorous starbursts {a
process
referred to as dissipational or "wet" merging}. Here, we propose
to
complete our sample of 31 LBG analogs using the ACS/SBC F150LP {FUV}
and
WFPC2 F606W {R} filters in order to create a statistical sample to
study
the mechanism that triggers star formation in UVLGs and its
implications
for the nature of LBGs. Specifically, we will 1} study the
trend
between galaxy merging and SFR in UVLGs, 2} artificially redshift
the
FUV images to z=1-4 and compare morphologies with those in similarly
sized
samples of LBGs at the same rest-frame wavelengths in e.g. GOODS,
UDF,
and COSMOS, 3} determine the presence and morphology of significant
stellar
mass in "pre- burst" stars, and 4} study their immediate
environment.
Together with our Spitzer {IRAC+MIPS}, GALEX, SDSS and
radio
data, the HST observations will form a unique union of data that
may
for the first time shed light on how the earliest major episodes of
star
formation in high redshift galaxies came about. This proposal was
adapted
from an ACS HRC+WFC proposal to meet the new Cycle 16 observing
constraints,
and can be carried out using the ACS/SBC and WFPC2 without
compromising
our original science goals.
WFPC2
11103
A
Snapshot Survey of The Most Massive Clusters of Galaxies
We
propose the continuation of our highly successful SNAPshot survey of
a
sample of 125 very X-ray luminous clusters in the redshift range
0.3-0.7.
As demonstrated by the 25 snapshots obtained so far in Cycle14
and
Cycle15 these systems frequently exhibit strong gravitational
lensing
as well as spectacular examples of violent galaxy interactions.
The
proposed observations will provide important constraints on the
cluster
mass distributions, the physical nature of galaxy-galaxy and
galaxy-gas
interactions in cluster cores, and a set of optically bright,
lensed
galaxies for further 8-10m spectroscopy. All of our primary
science
goals require only the detection and characterization of
high-surface-brightness
features and are thus achievable even at the
reduced
sensitivity of WFPC2. Because of their high redshift and thus
compact
angular scale our target clusters are less adversely affected by
the
smaller field of view of WFPC2 than more nearby systems.
Acknowledging
the broad community interest in this sample we waive our
data
rights for these observations. Due to a clerical error at STScI our
approved
Cycle15 SNAP program was barred from execution for 3 months and
only
6 observations have been performed to date - reinstating this SNAP
at
Cycle16 priority is of paramount importance to reach meaningful
statistics.
WFPC2
11029
WFPC2
CYCLE 15 Intflat Linearity Check and Filter Rotation Anomaly
Monitor
Intflat
observations will be taken to provide a linearity check: the
linearity
test consists of a series of intflats in F555W, in each gain
and
each shutter. A combination of intflats, visflats, and earthflats
will
be used to check the repeatability of filter wheel motions.
{Intflat
sequences tied to decons, visits 1-18 in prop 10363, have been
moved
to the cycle 15 decon proposal xxxx for easier scheduling.} Note:
long-exposure
WFPC2 intflats must be scheduled during ACS anneals to
prevent
stray light from the WFPC2 lamps from contaminating long ACS
external
exposures.
FLIGHT
OPERATIONS SUMMARY:
Significant
Spacecraft Anomalies: (The following are preliminary reports
of
potential non-nominal performance that will be investigated.)
HSTARS:
11214
- NICMOS Detector #2 VSRC Voltage (ND2VSRCV) Limit Violation
The NICMOS Detector #2 VSRC Voltage (ND2VSRCV) flagged OOL high
5.19
volts for one sample starting at 068/21:58:46 and return within
its
nominal (~5.1) range about 30 seconds later at 068/21:59:15.
Similar
occurrence documented in HSTARs 9586, 9728.
11215
- NICMOS Suspend
At 069/02:46:03 NICMOS Suspended with a status buffer message
NICMOS
632, P = 225, T = 34342, indicating
"MECH_2_MAX_RETRIES_EXCEEDED". The
number of positioning error retries attempted during a Filter
Wheel 2
movement exceeded the maximum limit.
At 069/08:46:45 received Exec 272 status buffer message P=0,
T=10871.
At acquisition of signal, 069/09:22:30, an Exec 272 status buffer
message had been received at 069/08:59:01, P=0, T=16759.
COMPLETED
OPS REQUEST:
18212-0
- Dump NICMOS Memory Following Suspend @ 069/0511z
18213-0
- NICMOS Suspend Recovery @ 069/1515z
COMPLETED
OPS NOTES: (None)
SCHEDULED
SUCCESSFUL
FGS
GSacq
20
20
FGS
REacq
18
18
OBAD
with Maneuver
70
70
SIGNIFICANT
EVENTS:
Flash
Report:
NICMOS
suspended on 2008/069/02:46:03 due to filter wheel #2 exceeding
its
maximum allotted number of retries (HSTAR# 11215). Data analysis was
performed
and the suspend event was attributed to known noise in the
filter
wheel #2 electronics.
Flash
Report:
NICMOS
was successfully recovered and has successfully completed the
first
observation set. NICMOS was recovered to operate at 069/13:59 via
Ops
Request 18213 and the PAMs were moved to the chronographic position
(PAMC)
at 069/15:14 to intercept the SMS. The first science observations
were
complete at 069/17:06. HST was in a ZOE at the time, but upon
acquisition
of data, there were no error messages and NICMOS was
operating
as expected