HUBBLE
SPACE TELESCOPE - Continuing to collect World Class Science
DAILY
REPORT # 4581
PERIOD
COVERED: UT April 02, 2008 (DOY 093)
OBSERVATIONS
SCHEDULED
NIC
11495
The
first direct detection of an extrasolar planetary stratosphere?
We
request NICMOS grism spectroscopy to observe the transit of WASP-3b.
This
newly discovered planet is the hottest nearby planet discovered so
far.
The atmosphere is predicted to be so hot that TiO and VO remain in
the
gas phase, creating a hot, strongly absorbing stratosphere. This
molecular
absorption will cause a 6% enhancement in the transit depth at
0.8
microns, compared to that at 1.3 microns. NICMOS/G096 and
NICMOS/G141
observations will therefore provide a straightforward test
of
the hot stratosphere hypothesis. The HST observations will provide a
precisely
determined radius measurement. This is required to drive
advances
in theories of planetary formation, evolution, and atmospheric
physics
and chemistry. The atmospheric TiO and VO absorption is
predicted
to cause an anomalously high IR brightness temperature for the
planet.
We need HST's direct test of the hot stratosphere hypothesis
promptly
to enable appropriate cold-Spitzer observations to be planned
and
interpreted. Spitzer is likely to exhaust its cryogens before these
observations
could be scheduled via the cycle 17 GO process.
NIC1/NIC2/NIC3
8795
NICMOS
Post-SAA calibration - CR Persistence Part 6
A
new procedure proposed to alleviate the CR-persistence problem of
NICMOS.
Dark frames will be obtained immediately upon exiting the SAA
contour
23, and every time a NICMOS exposure is scheduled within 50
minutes
of coming out of the SAA. The darks will be obtained in parallel
in
all three NICMOS Cameras. The POST-SAA darks will be non-standard
reference
files available to users with a USEAFTER date/time mark. The
keyword
'USEAFTER=date/time' will also be added to the header of each
POST-SAA
DARK frame. The keyword must be populated with the time, in
addition
to the date, because HST crosses the SAA ~8 times per day so
each
POST-SAA DARK will need to have the appropriate time specified, for
users
to identify the ones they need. Both the raw and processed images
will
be archived as POST-SAA DARKSs. Generally we expect that all NICMOS
science/calibration
observations started within 50 minutes of leaving an
SAA
will need such maps to remove the CR persistence from the science i
mages.
Each observation will need its own CRMAP, as different SAA
passages
leave different imprints on the NICMOS detectors.
WEPC2
11196
An
Ultraviolet Survey of Luminous Infrared Galaxies in the Local
Universe
At
luminosities above 10^11.4 L_sun, the space density of far-infrared
selected
galaxies exceeds that of optically selected galaxies. These
Luminous
Infrared Galaxies {LIRGs} are primarily interacting or merging
disk
galaxies undergoing starbursts and creating/fueling central AGN. We
propose
far {ACS/SBC/F140LP} and near {WFPC2/PC/F218W} UV imaging of a
sample
of 27 galaxies drawn from the complete IRAS Revised Bright Galaxy
Sample
{RBGS} LIRGs sample and known, from our Cycle 14 B and I-band ACS
imaging
observations, to have significant numbers of bright {23 < B < 21
mag}
star clusters in the central 30 arcsec. The HST UV data will be
combined
with previously obtained HST, Spitzer, and GALEX images to {i}
calculate
the ages of the clusters as function of merger stage, {ii}
measure
the amount of UV light in massive star clusters relative to
diffuse
regions of star formation, {iii} assess the feasibility of using
the
UV slope to predict the far-IR luminosity {and thus the star
formation
rate} both among and within IR-luminous galaxies, and {iv}
provide
a much needed catalog of rest- frame UV morphologies for
comparison
with rest-frame UV images of high-z LIRGs and Lyman Break
Galaxies.
These observations will achieve the resolution required to
perform
both detailed photometry of compact structures and spatial
correlations
between UV and redder wavelengths for a physical
interpretation
our IRX-Beta results. The HST UV data, combined with the
HST
ACS, Spitzer, Chandra, and GALEX observations of this sample, will
result
in the most comprehensive study of luminous starburst galaxies to
date.
WFPC2
11083
The
Structure, Formation and Evolution of Galactic Cores and Nuclei
A
surprising result has emerged from the ACS Virgo Cluster Survey
{ACSVCS},
a program to obtain ACS/WFC gz imaging for a large, unbiased
sample
of 100 early-type galaxies in the Virgo Cluster. On subarcsecond
scales
{i.e., <0.1"-1"}, the HST brightness profiles vary systematically
from
the brightest giants {which have nearly constant surface brightness
cores}
to the faintest dwarfs {which have compact stellar nuclei}.
Remarkably,
the fraction of galaxy mass contributed by the nuclei in the
faint
galaxies is identical to that contributed by supermassive black
holes
in the bright galaxies {0.2%}. These findings strongly suggest
that
a single mechanism is responsible for both types of Central Massive
Object:
most likely internally or externally modulated gas inflows that
feed
central black holes or lead to the formation of "nuclear star
clusters".
Understanding the history of gas accretion, star formation
and
chemical enrichment on subarcsecond scales has thus emerged as the
single
most pressing question in the study of nearby galactic nuclei,
either
active or quiescent. We propose an ambitious HST program {199
orbits}
that constitutes the next, obvious step forward:
high-resolution,
ultraviolet {WFPC2/F255W} and infrared {NIC1/F160W}
imaging
for the complete ACSVCS sample. By capitalizing on HST's unique
ability
to provide high-resolution images with a sharp and stable PSF at
UV
and IR wavelengths, we will leverage the existing optical HST data to
obtain
the most complete picture currently possible for the history of
star
formation and chemical enrichment on these small scales. Equally
important,
this program will lead to a significant improvement in the
measured
structural parameters and density distributions for the stellar
nuclei
and the underlying galaxies, and provide a sensitive measure of
"frosting"
by young stars in the galaxy cores. By virtue of its superb
image
quality and stable PSF, NICMOS is the sole instrument capable of
the
IR observations proposed here. In the case of the WFPC2
observations,
high-resolution UV imaging {< 0.1"} is a capability unique
to
HST, yet one that could be lost at any time.
WFPC2
11326
Polarizers
Closeout (Internal Observations)
Verify
stability of polarization calibration.
FLIGHT
OPERATIONS SUMMARY:
Significant
Spacecraft Anomalies: (The following are preliminary reports
of
potential non-nominal performance that will be investigated.)
HSTARS:
(None)
COMPLETED
OPS REQUEST: (None)
COMPLETED
OPS NOTES: (None)
SCHEDULED
SUCCESSFUL
FGS
GSacq
09
09
FGS
REacq
07
07
OBAD
with Maneuver 30
30
SIGNIFICANT
EVENTS: (None)