HUBBLE
SPACE TELESCOPE - Continuing to collect World Class Science
DAILY
REPORT # 4598
PERIOD
COVERED: UT April 25,26,27, 2008 (DOY 116,117,118)
OBSERVATIONS
SCHEDULED
NIC1/NIC2/NIC3
8795
NICMOS Post-SAA calibration - CR Persistence Part 6
A
new procedure proposed to alleviate the CR-persistence problem of
NICMOS.
Dark frames will be obtained immediately upon exiting the SAA
contour
23, and every time a NICMOS exposure is scheduled within 50
minutes
of coming out of the SAA. The darks will be obtained in parallel
in
all three NICMOS Cameras. The POST-SAA darks will be non-standard
reference
files available to users with a USEAFTER date/time mark. The
keyword
'USEAFTER=date/time' will also be added to the header of each
POST-SAA
DARK frame. The keyword must be populated with the time, in
addition
to the date, because HST crosses the SAA ~8 times per day so
each
POST-SAA DARK will need to have the appropriate time specified, for
users
to identify the ones they need. Both the raw and processed images
will
be archived as POST-SAA DARKSs. Generally we expect that all NICMOS
science/calibration
observations started within 50 minutes of leaving an
SAA
will need such maps to remove the CR persistence from the science i
mages.
Each observation will need its own CRMAP, as different SAA
passages
leave different imprints on the NICMOS detectors.
NIC3
11334
NICMOS
Cycle 16 Spectrophotometry
Observation
of the three primary WD flux standards must be repeated to
refine
the NICMOS absolute calibration and monitor for sensitivity
degradation.
So far, NICMOS grism spectrophotometry is available for
only
~16 stars with good STIS spectra at shorter wavelengths. There are
more
in the HST CALSPEC standard star data base with good STIS spectra
that
would also become precise IR standards with NICMOS absolute SED
measurements.
Monitoring the crucial three very red stars (M, L, T) for
variability
and better S/N in the IR. Apparent variability was
discovered
at shorter wavelengths during the ACS cross-calibration work
that
revealed a ~2% discrepancy of the cool star fluxes with respect to
the
hot primary WD standards. About a third of these stars are bright
enough
to do in one orbit, the rest require 2 orbits.
WFPC2/NIC2
11229
SEEDS:
The Search for Evolution of Emission from Dust in Supernovae with
HST
and Spitzer
The
role that massive stars play in the dust content of the Universe is
extremely
uncertain. It has long been hypothesized that dust can
condense
within the ejecta of supernovae {SNe}, however there is a
frustrating
discrepancy between the amounts of dust found in the early
Universe,
or predicted by nucleation theory, and inferred from SN
observations.
Our SEEDS collaboration has been carefully revisiting the
observational
case for dust formation by core- collapse SNe, in order to
quantify
their role as dust contributors in the early Universe. As dust
condenses
in expanding SN ejecta, it will increase in optical depth,
producing
three simultaneously observable phenomena: {1} increasing
optical
extinction; {2} infrared {IR} excesses; and {3} asymmetric
blue-shifted
emission lines. Our SEEDS collaboration recently reported
all
three phenomena occurring in SN2003gd, demonstrating the success of
our
observing strategy, and permitting us to derive a dust mass of up to
0.02
solar masses created in the SN. To advance our understanding of the
origin
and evolution of the interstellar dust in galaxies, we propose to
use
HST's WFPC2 and NICMOS instruments plus Spitzer's photometric
instruments
to monitor ten recent core-collapse SNe for dust formation
and,
as a bonus, detect light echoes that can affect the dust mass
estimates.
These space-borne observations will be supplemented by
ground-based
spectroscopic monitoring of their optical emission line
profiles.
These observations would continue our 2-year HST and Spitzer
monitoring
of this phenomena in order to address two key questions: Do
all
SNe produce dust? and How much dust do they produce? As all the SN
are
within 15 Mpc, each SN stands an excellent chance of detection with
HST
and Spitzer and of resolving potential light echoes.
FGS
11212
Filling
the Period Gap for Massive Binaries
The
current census of binaries among the massive O-type stars is
seriously
incomplete for systems in the period range from years to
millennia
because the radial velocity variations are too small and the
angular
separations too close for easy detection. Here we propose to
discover
binaries in this observational gap through a Faint Guidance
Sensor
SNAP survey of relatively bright targets listed in the Galactic O
Star
Catalog. Our primary goal is to determine the binary frequency
among
those in the cluster/association, field, and runaway groups. The
results
will help us assess the role of binaries in massive star
formation
and in the processes that lead to the ejection of massive
stars
from their natal clusters. The program will also lead to the
identification
of new, close binaries that will be targets of long term
spectroscopic
and high angular resolution observations to determine
their
masses and distances. The results will also be important for the
interpretation
of the spectra of suspected and newly identified binary
and
multiple systems.
FGS
11210
The
Architecture of Exoplanetary Systems
Are
all planetary systems coplanar? Concordance cosmogony makes that
prediction.
It is, however, a prediction of extrasolar planetary system
architecture
as yet untested by direct observation for main sequence
stars
other than the Sun. To provide such a test, we propose to carry
out
FGS astrometric studies on four stars hosting seven companions. Our
understanding
of the planet formation process will grow as we match not
only
system architecture, but formed planet mass and true distance from
the
primary with host star characteristics for a wide variety of host
stars
and exoplanet masses. We propose that a series of FGS astrometric
observations
with demonstrated 1 millisecond of arc per-observation
precision
can establish the degree of coplanarity and component true
masses
for four extrasolar systems: HD 202206 {brown dwarf+planet}; HD
128311
{planet+planet}, HD 160691 = mu Arae {planet+planet}, and HD
222404AB
= gamma Cephei {planet+star}. In each case the companion is
identified
as such by assuming that the minimum mass is the actual mass.
For
the last target, a known stellar binary system, the companion orbit
is
stable only if coplanar with the AB binary orbit.
WFPC2
11202
The
Structure of Early-type Galaxies: 0.1-100 Effective Radii
The
structure, formation and evolution of early-type galaxies is still
largely
an open problem in cosmology: how does the Universe evolve from
large
linear scales dominated by dark matter to the highly non-linear
scales
of galaxies, where baryons and dark matter both play important,
interacting,
roles? To understand the complex physical processes
involved
in their formation scenario, and why they have the tight
scaling
relations that we observe today {e.g. the Fundamental Plane}, it
is
critically important not only to understand their stellar structure,
but
also their dark-matter distribution from the smallest to the largest
scales.
Over the last three years the SLACS collaboration has developed
a
toolbox to tackle these issues in a unique and encompassing way by
combining
new non-parametric strong lensing techniques, stellar
dynamics,
and most recently weak gravitational lensing, with
high-quality
Hubble Space Telescope imaging and VLT/Keck spectroscopic
data
of early-type lens systems. This allows us to break degeneracies
that
are inherent to each of these techniques separately and probe the
mass
structure of early-type galaxies from 0.1 to 100 effective radii.
The
large dynamic range to which lensing is sensitive allows us both to
probe
the clumpy substructure of these galaxies, as well as their
low-density
outer haloes. These methods have convincingly been
demonstrated,
by our team, using smaller pilot-samples of SLACS lens
systems
with HST data. In this proposal, we request observing time with
WFPC2
and NICMOS to observe 53 strong lens systems from SLACS, to obtain
complete
multi-color imaging for each system. This would bring the total
number
of SLACS lens systems to 87 with completed HST imaging and
effectively
doubles the known number of galaxy-scale strong lenses. The
deep
HST images enable us to fully exploit our new techniques, beat down
low-number
statistics, and probe the structure and evolution of
early-type
galaxies, not only with a uniform data-set an order of
magnitude
larger than what is available now, but also with a fully
coherent
and self-consistent methodological approach!
NIC3/WFPC2
11192
NICMOS
Confirmation of Candidates of the Most Luminous Galaxies at z > 7
While
the deepest pencil-beam near-IR survey suggested that the Universe
was
too young to build up many luminous galaxies by z ~ 7--8 (Bouwens &
Illingworth
2006), there is also evidenc indicating the contrary. It is
now
known that some galaxies with stellar masses of M>1e10 Msun were
already
in place by z ~ 6--7, which strongly suggests that their
progenitors
should be significantly more luminous, and hence detectable
in
deep, wide-field near-IR surveys (Yan et al. 2006). As galaxies at
such
a high redshift should manifest themselves as "dropouts" from the
optical,
we have carried out a very wide-field, deep near-IR survey in
the
GOODS fields to search for z-band dropouts as candidates of galaxies
at
z > 7. In total, six promising candidates have been found in ~ 300
sq.
arcmin to J_AB ~ 24.5 mag (corresponding to restframe M(UV) < -22.5
mag
at z ~ 7). By contrast, the galaxy luminosity function (LF)
suggested
in BI06 would predict at most 3--5 galaxies over the entire
2-pi
sky at this brightness level. Here we propose to observe these
candidates
with NIC3 in F110W and F160W to further investigate their
nature.
If any of these candidates are indeed at z > 7, the result will
lead
to a completely new picture of star formation in the early
universe.
If none of our candidates are consistent with being at z > 7,
then
the depth and area of our near-IR survey (from which the candidates
are
drawn) will let us set a very stringent upper limit on the bright
end
of the galaxy LF at those redshift. As a result, our program will
still
be able to provide new clues about the processes of early galaxy
formation,
such as their dust contents and their merging time scale (Yan
et
al. 2006).
WFPC2
11160
Escape
fraction and stellar populations in a highly magnified
Lyman-Break
Galaxy
Understanding
how star-forming galaxies contribute to cosmic
reionization
is one of the frontiers of observational cosmology. A key
ingredient
in this issue is measuring the escape fraction of
Lyman-continuum
photons in high redshift galaxies (z>3). Gravitationally
lensed
Lyman-break galaxies (LBGs) act as important laboratories for
studying
the resolved physical properties at sub-kpc scales with high
signal-to-noise.
Correlating the local escape fraction with physical
parameters
derived from stellar population modeling (such as the star
formation
rate, age and reddening) will offer new insights into
understanding
the physical processes involved with the production of
ionizing
photons. We propose here follow-up observations of the "Cosmic
Eye",
a remarkable, highly magnified (x 30), Lyman-break galaxy at
z~3.07
using WFPC2 and NICMOS. Deep ultraviolet WFPC2 imaging will
provide
a detailed study of variations in the escape fraction, while
WFPC2
and NICMOS/NIC2 imaging will complement the current broad-band
detections
to allow a precise modeling of the spatially-dependent
spectral
energy distribution. This will allow the first comprehensive
analysis
between the escape fraction, the local SED and the dynamics of
a
distant galaxy.
ACS/SBC
11158
HST
Imaging of UV emission in Quiescent Early-type Galaxies
We
have constructed a sample of early type galaxies at z~0.1 that have
blue
UV-optical colors, yet also show no signs of optical emission, or
extended
blue light. We have cross-correlated the SDSS catalog and the
Galaxy
Evolution Explorer Medium Imaging Survey to select a sample of
galaxies
where this UV emission is strongest. The origin of the UV
rising
flux in these galaxies continues to be debated, and the
possibility
that some fraction of these galaxies may be experiencing low
levels
of star formation cannot be excluded. There is also a possibility
that
low level AGN activity {as evidenced by a point source} is
responsible
We propose to image the UV emission using the HST/SBC and to
explore
the morphology of the UV emission relative to the optical light.
NIC2
11157
NICMOS
Imaging Survey of Dusty Debris Around Nearby Stars Across the
Stellar
Mass Spectrum
Association
of planetary systems with dusty debris disks is now quite
secure,
and advances in our understanding of planet formation and
evolution
can be achieved by the identification and characterization of
an
ensemble of debris disks orbiting a range of central stars with
different
masses and ages. Imaging debris disks in starlight scattered
by
dust grains remains technically challenging so that only about a
dozen
systems have thus far been imaged. A further advance in this field
needs
an increased number of imaged debris disks. However, the technical
challenge
of such observations, even with the superb combination of HST
and
NICMOS, requires the best targets. Recent HST imaging investigations
of
debris disks were sample-limited not limited by the technology used.
We
performed a search for debris disks from a IRAS/Hipparcos cross
correlation
which involved an exhaustive background contamination check
to
weed out false excess stars. Out of ~140 identified debris disks, we
selected
22 best targets in terms of dust optical depth and disk angular
size.
Our target sample represents the best currently available target
set
in terms of both disk brightness and resolvability. For example, our
targets
have higher dust optical depth, in general, than newly
identified
Spitzer disks. Also, our targets cover a wider range of
central
star ages and masses than previous debris disk surveys. This
will
help us to investigate planetary system formation and evolution
across
the stellar mass spectrum. The technical feasibility of this
program
in two-gyro mode guiding has been proven with on-orbit
calibration
and science observations during HST cycles 13, 14, and 15.
NIC2/NIC2
11155
Dust
Grain Evolution in Herbig Ae Stars: NICMOS Coronagraphic Imaging
and
Polarimetry
We
propose to take advantage of the sensitive coronagraphic capabilities
of
NICMOS to obtain multiwavelength coronagraphic imaging and
polarimetry
of primordial dust disks around young intermediate-mass
stars
{Herbig Ae stars}, in order to advance our understanding of how
dust
grains are assembled into larger bodies. Because the polarization
of
scattered light is strongly dependent on scattering particle size and
composition,
coronagraphic imaging polarimetry with NICMOS provides a
uniquely
powerful tool for measuring grain properties in spatially
resolved
circumstellar disks. It is widely believed that planets form
via
the gradual accretion of planetesimals in gas-rich, dusty
circumstellar
disks, but the connection between this suspected process
and
the circumstellar disks that we can now observe around other stars
remains
very uncertain. Our proposed observations, together with
powerful
3-D radiative transfer codes, will enable us to quantitatively
determine
dust grain properties as a function of location within disks,
and
thus to test whether dust grains around young stars are in fact
growing
in size during the putative planet-formation epoch. HST imaging
polarimetry
of Herbig Ae stars will complement and extend existing
polarimetric
studies of disks around lower-mass T Tauri stars and debris
disks
around older main-sequence stars. When combined with these
previous
studies, the proposed research will help us establish the
influence
of stellar mass on the growth of dust grains into larger
planetesimals,
and ultimately to planets. Our results will also let us
calibrate
models of the thermal emission from these disks, a critical
need
for validating the properties of more distant disks inferred on the
basis
of spectral information alone.
WFPC2/NIC3/ACS/SBC
11144
Building
on the Significant NICMOS Investment in GOODS: A Bright,
Wide-Area
Search for z>=7 Galaxies
One
of the most exciting frontiers in observational cosmology has been
to
trace the buildup and evolution of galaxies from very early times.
While
hierarchical theory teaches us that the star formation rate in
galaxies
likely starts out small and builds up gradually, only recently
has
it been possible to see evidence for this observationally through
the
evolution of the LF from z~6 to z~3. Establishing that this build up
occurs
from even earlier times {z~7-8} has been difficult, however, due
to
the small size of current high-redshift z~7-8 samples -- now
numbering
in the range of ~4-10 sources. Expanding the size of these
samples
is absolutely essential, if we are to push current studies of
galaxy
buildup back to even earlier times. Fortunately, we should soon
be
able to do so, thanks to ~50 arcmin**2 of deep {26.9 AB mag at 5
sigma}
NICMOS 1.6 micron data that will be available over the two ACS
GOODS
fields as a result of one recent 180- orbit ACS backup program and
a
smaller program. These data will nearly triple the deep near-IR
imaging
currently available and represent a significant resource for
finding
and characterizing the brightest high-redshift sources -- since
high-redshift
candidates can be easily identified in these data from
their
red z-H colours. Unfortunately, the red z-H colours of these
candidates
are not sufficient to determine that these sources are at
z>=7,
and it is important also to have deep photometry at 1.1 microns.
To
obtain this crucial information, we propose to follow up each of
these
z-H dropouts with NICMOS at 1.1 microns to determine which are at
high
redshift and thus significantly expand our sample of luminous, z>=7
galaxies.
Since preliminary studies indicate that these candidates occur
in
only 30% of the NIC3 fields, our follow-up strategy is ~3 times as
efficient
as without this preselection and 9 times as efficient as a
search
in a field with no pre-existing data. In total, we expect to
identify
~8 luminous z-dropouts and possibly ~2 z~10 J-dropouts as a
result
of this program, more than tripling the number currently known.
The
increased sample sizes are important if we are to solidify current
conclusions
about galaxy buildup and the evolution of the LF from z~8.
In
addition to the high redshift science, these deep 1.1 micron data
would
have significant value for many diverse endeavors, including {1}
improving
our constraints on the stellar mass density at z~7-10 and {2}
doubling
the number of galaxies at z~6 for which we can estimate dust
obscuration.
WFPC2
11130
AGNs
with Intermediate-mass Black Holes: Testing the Black Hole-Bulge
Paradigm,
Part II
The
recent progress in the study of central black holes in galactic
nuclei
has led to a general consensus that supermassive {10^6-10^9 solar
mass}
black holes are closely connected with the formation and
evolutionary
history of large galaxies, especially their bulge
component.
Two outstanding issues, however, remain unresolved. Can
central
black holes form in the absence of a bulge? And does the mass
function
of central black holes extend below 10^6 solar masses?
Intermediate-mass
black holes {<10^6 solar masses}, if they exist, may
offer
important clues to the nature of the seeds of supermassive black
holes.
Using the SDSS, our group has successfully uncovered a new
population
of AGNs with intermediate-mass black holes that reside in
low-luminosity
galaxies. However, very little is known about the
detailed
morphologies or structural parameters of the host galaxies
themselves,
including the crucial question of whether they have bulges
or
not. Surprisingly, the majority of the targets of our Cycle 14 pilot
program
have structural properties similar to dwarf elliptical galaxies.
The
statistics from this initial study, however, are really too sparse
to
reach definitive conclusions on this important new class of black
holes.
We wish to extend this study to a larger sample, by using the
Snapshot
mode to obtain WFPC2 F814W images from a parent sample of 175
AGNs
with intermediate- mass black holes selected from our final SDSS
search.
We are particularly keen to determine whether the hosts contain
bulges,
and if so, how the fundamental plane properties of the host
depend
on the mass of their central black holes. We will also
investigate
the environment of this unique class of AGNs.
WFPC2
11128
Time
Scales Of Bulge Formation In Nearby Galaxies
Traditionally,
bulges are thought to fit well into galaxy formation
models
of hierarchical merging. However, it is now becoming well
established
that many bulges formed through internal, secular evolution
of
the disk rather than through mergers. We call these objects
pseudobulges.
Much is still unknown about pseudobulges, the most
pressing
questions being: How, exactly, do they build up their mass? How
long
does it take? And, how many exist? We are after an answer to these
questions.
If pseudobulges form and evolve over longer periods than the
time
between mergers, then a significant population of pseudobulges is
hard
to explain within current galaxy formation theories. A pseudobulge
indicates
that a galaxy has most likely not undergone a major merger
since
the formation of the disk. The ages of pseudobulges give us an
estimate
for the time scale of this quiescent evolution. We propose to
use
24 orbits of HST time to complete UBVIH imaging on a sample of 33
nearby
galaxies that we have observed with Spitzer in the mid-IR. These
data
will be used to measure spatially resolved stellar population
parameters
{mean stellar age, metallicity, and star formation history};
comparing
ages to star formation rates allows us to accurately constrain
the
time scale of pseudobulge formation. Our sample of bulges includes
both
pseudo- and classical bulges, and evenly samples barred and
unbarred
galaxies. Most of our sample is imaged, 13 have complete UBVIH
coverage;
we merely ask to complete missing observations so that we may
construct
a uniform sample for studying bulge formation. We also wish to
compare
the stellar population parameters to a variety of bulge and
global
galaxy properties including star formation rates, dynamics,
internal
bulge morphology, structure from bulge-disk decompositions, and
gas
content. Much of this data set is already or is being assembled.
This
will allow us to derive methods of pseudobulge identification that
can
be used to accurately count pseudobulges in large surveys. Aside
from
our own science goals, we will present this broad set of data to
the
community. Thus, we waive proprietary periods for all observations.
NIC3
11120
A
Paschen-Alpha Study of Massive Stars and the ISM in the Galactic
Center
The
Galactic center (GC) is a unique site for a detailed study of a
multitude
of complex astrophysical phenomena, which may be common to
nuclear
regions of many galaxies. Observable at resolutions
unapproachable
in other galaxies, the GC provides an unparalleled
opportunity
to improve our understanding of the interrelationships of
massive
stars, young stellar clusters, warm and hot ionized gases,
molecular
clouds, large scale magnetic fields, and black holes. We
propose
the first large-scale hydrogen Paschen alpha line survey of the
GC
using NICMOS on the Hubble Space Telescope. This survey will lead to
a
high resolution and high sensitivity map of the Paschen alpha line
emission
in addition to a map of foreground extinction, made by
comparing
Paschen alpha to radio emission. This survey of the inner 75
pc
of the Galaxy will provide an unprecedented and complete search for
sites
of massive star formation. In particular, we will be able to (1)
uncover
the distribution of young massive stars in this region, (2)
locate
the surfaces of adjacent molecular clouds, (3) determine
important
physical parameters of the ionized gas, (4) identify compact
and
ultra-compact HII regions throughout the GC. When combined with
existing
Chandra and Spitzer surveys as well as a wealth of other
multi-wavelength
observations, the results will allow us to address such
questions
as where and how massive stars form, how stellar clusters are
disrupted,
how massive stars shape and heat the surrounding medium, and
how
various phases of this medium are interspersed.
NIC3
11107
Imaging
of Local Lyman Break Galaxy Analogs: New Clues to Galaxy
Formation
in the Early Universe
We
have used the ultraviolet all-sky imaging survey currently being
conducted
by the Galaxy Evolution Explorer {GALEX} to identify for the
first
time a rare population of low-redshift starbursts with properties
remarkably
similar to high-redshift Lyman Break Galaxies {LBGs}. These
"compact
UV luminous galaxies" {UVLGs} resemble LBGs in terms of size,
SFR,
surface brightness, mass, metallicity, kinematics, dust, and color.
The
UVLG sample offers the unique opportunity of investigating some very
important
properties of LBGs that have remained virtually inaccessible
at
high redshift: their morphology and the mechanism that drives their
star
formation. Therefore, in Cycle 15 we have imaged 7 UVLGs using ACS
in
order to 1} characterize their morphology and look for signs of
interactions
and mergers, and 2} probe their star formation histories
over
a variety of timescales. The images show a striking trend of small-
scale
mergers turning large amounts of gas into vigorous starbursts {a
process
referred to as dissipational or "wet" merging}. Here, we propose
to
complete our sample of 31 LBG analogs using the ACS/SBC F150LP {FUV}
and
WFPC2 F606W {R} filters in order to create a statistical sample to
study
the mechanism that triggers star formation in UVLGs and its
implications
for the nature of LBGs. Specifically, we will 1} study the
trend
between galaxy merging and SFR in UVLGs, 2} artificially redshift
the
FUV images to z=1-4 and compare morphologies with those in similarly
sized
samples of LBGs at the same rest-frame wavelengths in e.g. GOODS,
UDF,
and COSMOS, 3} determine the presence and morphology of significant
stellar
mass in "pre- burst" stars, and 4} study their immediate
environment.
Together with our Spitzer {IRAC+MIPS}, GALEX, SDSS and
radio
data, the HST observations will form a unique union of data that
may
for the first time shed light on how the earliest major episodes of
star
formation in high redshift galaxies came about. This proposal was
adapted
from an ACS HRC+WFC proposal to meet the new Cycle 16 observing
constraints,
and can be carried out using the ACS/SBC and WFPC2 without
compromising
our original science goals.
NIC3
11082
NICMOS
Imaging of GOODS: Probing the Evolution of the Earliest Massive
Galaxies,
Galaxies Beyond Reionization, and the High Redshift Obscured
Universe
(uses
ACS/SBC and WFPC2)
Deep
near-infrared imaging provides the only avenue towards
understanding
a host of astrophysical problems, including: finding
galaxies
and AGN at z > 7, the evolution of the most massive galaxies,
the
triggering of star formation in dusty galaxies, and revealing
properties
of obscured AGN. As such, we propose to observe 60 selected
areas
of the GOODS North and South fields with NICMOS Camera 3 in the
F160W
band pointed at known massive M > 10^11 M_0 galaxies at z > 2
discovered
through deep Spitzer imaging. The depth we will reach {26.5
AB
at 5 sigma} in H_160 allows us to study the internal properties of
these
galaxies, including their sizes and morphologies, and to
understand
how scaling relations such as the Kormendy relationship
evolved.
Although NIC3 is out of focus and undersampled, it is currently
our
best opportunity to study these galaxies, while also sampling enough
area
to perform a general NIR survey 1/3 the size of an ACS GOODS field.
These
data will be a significant resource, invaluable for many other
science
goals, including discovering high redshift galaxies at z > 7,
the
evolution of galaxies onto the Hubble sequence, as well as examining
obscured
AGN and dusty star formation at z > 1.5. The GOODS fields are
the
natural location for HST to perform a deep NICMOS imaging program,
as
extensive data from space and ground based observatories such as
Chandra,
GALEX, Spitzer, NOAO, Keck, Subaru, VLT, JCMT, and the VLA are
currently
available for these regions. Deep high-resolution
near-infrared
observations are the one missing ingredient to this
survey,
filling in an important gap to create the deepest, largest, and
most
uniform data set for studying the faint and distant universe. The
importance
of these images will increase with time as new facilities
come
on line, most notably WFC3 and ALMA, and for the planning of future
JWST
observations.
FLIGHT
OPERATIONS SUMMARY:
Significant
Spacecraft Anomalies: (The following are preliminary reports
of
potential non-nominal performance that will be investigated.)
HSTARS:
11273
- GSacq(2,1,2) fails to RGA control
Upon acquisition of signal at 117/00:45:45 a 486 ESB message "A07"
("FGS
Coarse Track failed - Time out waiting for Data Valid") was observed.
GSACQ(2,1,2) at 116/23:47:46 appears to have failed, #44 commands did
not update from previous values before loss of signal. No FGS flags were
seen. Further information after engineering recorder dump.
REACQ(2,1,2) at 117/01:20:17 failed to gyro control with a 486 ESB
message "A0A" (FGS Fine Lock failed-Timed out waiting for fine lock).
11276
- NICMOS 744 TPG Reset
At 118/14:49:48 STB message NICMOS 736 and 744 was received. NICMOS 744
is Timing Pattern Generator reset due to a single event upset. This was
accompanied by NICMOS 639, NICMOS 592, NICMOS 588,and NICMOS 290. During
the time we received the STB message we were in observe. We were not in
an SAA. The on call SE was contacted. The STB was dumped and NS-11 was
executed to clear NERRCNT.
11278
- GSacq(2,3,2) resulted in Fine Lock Backup
The GSacq(2,3,2) scheduled at 118/21:38:29 resulted in fine lock backup
(2,0,2). Stop flags QF3STOPF and QSTOP were received on FGS 3 at
21:41:49. The Map at 21:45:50 showed errors of V1=-8.11, V2=-9.74,
V3=2.92, and RSS=13.01.
COMPLETED
OPS REQUEST: (None)
COMPLETED
OPS NOTES: (None)
SCHEDULED SUCCESSFUL
FGS
GSacq 27 26
FGS
REacq 12 11
OBAD
with Maneuver 74 72
SIGNIFICANT
EVENTS: (None)