HUBBLE
SPACE TELESCOPE - Continuing to Collect World Class Science
DAILY
REPORT #5076
PERIOD
COVERED: 5am April 15 - 5am April 16, 2010 (DOY 105/09:00z-106/09:00z)
OBSERVATIONS
SCHEDULED
COS/FUV
11541
COS-GTO:
Cool, Warm, and Hot Gas in the Cosmic Web and in Galaxy Halos
COS
G130M and G160M 20, 000 resolution observations will be obtained for
17
QSOs to study cool, warm and hot gas in the cosmic web and in galaxy
halos.
5 QSOs with z from 0.177 to 0.574 and sum z = 1.68 will be
observed
with S/N = 40-50 per resolution element. 12 QSOs with z = 0.286
to
0.669 and sum z = 5.57 will be observed with S/N = 30-40. The
observations
will allow a wide range of IGM studies including
determining
the frequency of occurrence of the different types of
absorption
systems detected, along with studies of the physical
conditions
and elemental abundances in the different systems. Special
emphasis
will be given to a study of the properties of highly ionized
IGM
as traced by O VI, O V, O IV, N V, and C IV. The high S/N of the
observations
will allow a search for broad Lyman alpha absorption and
weak
metal line absorption that can be crucial for the evaluation of
physical
conditions and elemental abundances. Supporting ground based
observations
will allow studies of the association of the absorbers with
galaxy
structures along the 17 lines of sight. The overall goal of the
program
will be to obtain the information that will allow an assessment
of
the baryonic content of the IGM as revealed by UV and EUV absorption
lines
seen in the spectra of QSOs.
FGS
11789
An
Astrometric Calibration of Population II Distance Indicators
In
2002, HST produced a highly precise parallax for RR Lyrae. That
measurement
resulted in an absolute magnitude, M(V)= 0.61+/-0.11, a
useful
result, judged by the over ten refereed citations each year
since.
It is, however, unsatisfactory to have the direct,
parallax-based,
distance scale of Population II variables based on a
single
star. We propose, therefore, to obtain the parallaxes of four
additional
RR Lyrae stars and two Population II Cepheids, or W Vir
stars.
The Population II Cepheids lie with the RR Lyrae stars on a
common
K-band Period-Luminosity relation. Using these parallaxes to
inform
that relationship, we anticipate a zero point error of 0.04
magnitude.
This result should greatly strengthen confidence in the
Population
II distance scale and increase our understanding of RR Lyrae
star
and Pop. II Cepheid astrophysics.
STIS/CC
11845
CCD
Dark Monitor Part 2
Monitor
the darks for the STIS CCD.
STIS/CC
11847
CCD
Bias Monitor-Part 2
Monitor
the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,
and
1x1 at gain = 4, to build up high-S/N superbiases and track the
evolution
of hot columns.
WFC3/ACS/IR
11600
Star
Formation, Extinction, and Metallicity at 0.7<z<1.5: H-Alpha Fluxes
and
Sizes from a Grism Survey of GOODS-N
The
global star formation rate (SFR) is ~10x higher at z=1 than today.
This
could be due to drastically elevated SFR in some fraction of
galaxies,
such as mergers with central bursts, or a higher SFR across
the
board. Either means that the conditions in z=1 star forming galaxies
could
be quite different from local objects. The next step beyond
measuring
the global SFR is to determine the dependence of SFR,
obscuration,
metallicity, and size of the star-forming region on galaxy
mass
and redshift. However, SFR indicators at z=1 typically apply local
calibrations
for UV, [O II] and far-IR, and do not agree with each other
on
a galaxy-by-galaxy basis. Extinction, metallicity, and dust
properties
cause uncontrolled offsets in SFR calibrations. The great
missing
link is Balmer H-alpha, the most sensitive probe of SFR. We
propose
a slitless WFC3/G141 IR grism survey of GOODS-N, at 2
orbits/pointing.
It will detect Ha+[N II] emission from 0.7<z<1.5, to
L(Ha)
= 1.7 x 10^41 erg/sec at z=1, measuring H-alpha fluxes and sizes
for
> 600 galaxies, and a small number of higher-redshift emitters. This
will
produce: an emission-line redshift survey unbiased by magnitude and
color
selection; star formation rates as a function of galaxy
properties,
e.g. stellar mass and morphology/mergers measured by ACS;
comparisons
of SFRs from H-alpha to UV and far-IR indicators;
calibrations
of line ratios of H-alpha to important nebular lines such
as
[O II] and H-beta, measuring variations in metallicity and extinction
and
their effect on SFR estimates; and the first measurement of scale
lengths
of the H-alpha emitting, star- forming region in a large sample
of
z~1 sources.
WFC3/ACS/UVIS/IR
11570
Narrowing
in on the Hubble Constant and Dark Energy
A
measurement of the Hubble constant to a precision of a few percent
would
be a powerful aid to the investigation of the nature of dark
energy
and a potent "end-to end" test of the present cosmological model.
In
Cycle 15 we constructed a new streamlined distance ladder utilizing
high-
quality type Ia supernova data and observations of Cepheids with
HST
in the near-IR to minimize the dominant sources of systematic
uncertainty
in past measurements of the Hubble constant and reduce its
total
uncertainty to a little under 5%. Here we propose to exploit this
new
route to reduce the remaining uncertainty by more than 30%,
translating
into an equal reduction in the uncertainty of the equation
of
state of dark energy. We propose three sets of observations to reach
this
goal: a mosaic of NGC 4258 with WFC3 in F160W to triple its sample
of
long period Cepheids, WFC3/F160W observations of the 6 ideal SN Ia
hosts
to triple their samples of Cepheids, and observations of NGC 5584
the
host of a new SN Ia, SN 2007af, to discover and measure its Cepheids
and
begin expanding the small set of SN Ia luminosity calibrations.
These
observations would provide the bulk of a coordinated program aimed
at
making the measurement of the Hubble constant one of the leading
constraints
on dark energy.
WFC3/UVIS
11588
Galaxy-Scale
Strong Lenses from the CFHTLS Survey
We
aim to investigate the origin and evolution of early-type galaxies
using
gravitational lensing, modeling the mass profiles of objects over
a
wide range of redshifts. The low redshift (z = 0.2) sample is already
in
place following the successful HST SLACS survey; we now propose to
build
up and analyze a sample of comparable size (~50 systems) at high
redshift
(0.4 < z < 0.9) using HST WFC3 Snapshot observations of lens
systems
identified by the SL2S collaboration in the CFHT legacy survey.
WFC3/UVIS
11594
A
WFC3 Grism Survey for Lyman Limit Absorption at z=2
We
propose to conduct a spectroscopic survey of Lyman limit absorbers at
redshifts
1.8 < z < 2.5, using WFC3 and the G280 grism. This proposal
intends
to complete an approved Cycle 15 SNAP program (10878), which was
cut
short due to the ACS failure. We have selected 64 quasars at 2.3 < z
<
2.6 from the Sloan Digital Sky Survey Spectroscopic Quasar Sample, for
which
no BAL signature is found at the QSO redshift and no strong metal
absorption
lines are present at z > 2.3 along the lines of sight. The
survey
has three main observational goals. First, we will determine the
redshift
frequency dn/dz of the LLS over the column density range 16.0 <
log(NHI)
< 20.3 cm^-2. Second, we will measure the column density
frequency
distribution f(N) for the partial Lyman limit systems (PLLS)
over
the column density range 16.0 < log(NHI) < 17.5 cm^-2. Third, we
will
identify those sightlines which could provide a measurement of the
primordial
D/H ratio. By carrying out this survey, we can also help
place
meaningful constraints on two key quantities of cosmological
relevance.
First, we will estimate the amount of metals in the LLS using
the
f(N), and ground based observations of metal line transitions.
Second,
by determining f(N) of the PLLS, we can constrain the amplitude
of
the ionizing UV background at z~2 to a greater precision. This survey
is
ideal for a snapshot observing program, because the on-object
integration
times are all well below 30 minutes, and follow-up
observations
from the ground require minimal telescope time due to the
QSO
sample being bright.
WFC3/UVIS
11650
Mutual
Orbits, Colors, Masses, and Bulk Densities of 3 Cold Classical
Trans-Neptunian
Binaries
Many
Trans-Neptunian Objects (TNOs) have been found to be binary or
multiple
systems. As in other astrophysical settings, Trans-Neptunian
Binaries
(TNBs) offer uniquely valuable information. Their mutual orbits
allow
the direct determination of their system masses, perhaps the most
fundamental
physical quantity of any astronomical object. Their
frequency
of occurrence and dynamical characteristics provide clues to
formation
conditions and evolution scenarios affecting both the binaries
and
their single neighbors. Combining masses with sizes, bulk densities
can
be measured. Densities constrain bulk composition and internal
structure,
key clues to TNO origins and evolution over time. Several TNB
bulk
densities have been determined, hinting at interesting trends. But
none
of them belongs to the Cold Classical sub-population, the one group
of
TNOs with demonstrably distinct physical characteristics. Two
top-priority
Spitzer programs will soon observe and measure the sizes of
3
Cold Classical TNBs. This proposal seeks to determine the mutual
orbits
and thus masses of these systems, enabling computation of their
densities.
WFC3/UVIS
11905
WFC3
UVIS CCD Daily Monitor
The
behavior of the WFC3 UVIS CCD will be monitored daily with a set of
full-frame,
four-amp bias and dark frames. A smaller set of 2Kx4K
subarray
biases are acquired at less frequent intervals throughout the
cycle
to support subarray science observations. The internals from this
proposal,
along with those from the anneal procedure (Proposal 11909),
will
be used to generate the necessary superbias and superdark reference
files
for the calibration pipeline (CDBS).
WFC3/UVIS
11908
Cycle
17: UVIS Bowtie Monitor
Ground
testing revealed an intermittent hysteresis type effect in the
UVIS
detector (both CCDs) at the level of ~1%, lasting hours to days.
Initially
found via an unexpected bowtie-shaped feature in flatfield
ratios,
subsequent lab tests on similar e2v devices have since shown
that
it is also present as simply an overall offset across the entire
CCD,
i.e., a QE offset without any discernable pattern. These lab tests
have
further revealed that overexposing the detector to count levels
several
times full well fills the traps and effectively neutralizes the
bowtie.
Each visit in this proposal acquires a set of three 3x3 binned
internal
flatfields: the first unsaturated image will be used to detect
any
bowtie, the second, highly exposed image will neutralize the bowtie
if
it is present, and the final image will allow for verification that
the
bowtie is gone.
FLIGHT
OPERATIONS SUMMARY:
Significant
Spacecraft Anomalies: (The following are preliminary reports
of
potential non-nominal performance that will be investigated.)
HSTARS:
(None)
COMPLETED
OPS REQUEST: (None)
COMPLETED
OPS NOTES: (None)
SCHEDULED
SUCCESSFUL
FGS
GSAcq
7
7
FGS
REAcq
4
4
OBAD
with Maneuver 4
4
SIGNIFICANT
EVENTS: (None)