Oct 30, 2012
Dwayne Brown
Headquarters, Washington
202-358-1726
dwayne
c
brown@nasa
gov
Guy Webster Jet Propulsion Laboratory, Pasadena, Calif 818-354-6278 guy webster@jpl nasa gov
Rachel Hoover Ames Research Center, Moffet Field, Calif 650-604-4789 rachel hoover@nasa gov
RELEASE: 12-383
NASA ROVER'S FIRST SOIL STUDIES HELP FINGERPRINT MARTIAN MINERALS
PASADENA, Calif -- NASA's Mars rover Curiosity has completed initial experiments showing the mineralogy of Martian soil is similar to weathered basaltic soils of volcanic origin in Hawaii
The minerals were identified in the first sample of Martian soil ingested recently by the rover Curiosity used its Chemistry and Mineralogy instrument (CheMin) to obtain the results, which are filling gaps and adding confidence to earlier estimates of the mineralogical makeup of the dust and fine soil widespread on the Red Planet
"We had many previous inferences and discussions about the mineralogy of Martian soil," said David Blake of NASA Ames Research Center in Moffett Field, Calif , who is the principal investigator for CheMin "Our quantitative results provide refined and in some cases new identifications of the minerals in this first X-ray diffraction analysis on Mars "
The identification of minerals in rocks and soil is crucial for the mission's goal to assess past environmental conditions Each mineral records the conditions under which it formed The chemical composition of a rock provides only ambiguous mineralogical information, as in the textbook example of the minerals diamond and graphite, which have the same chemical composition, but strikingly different structures and properties
CheMin uses X-ray diffraction, the standard practice for geologists on Earth using much larger laboratory instruments This method provides more accurate identifications of minerals than any method previously used on Mars X-ray diffraction reads minerals' internal structure by recording how their crystals distinctively interact with X-rays Innovations from Ames led to an X-ray diffraction instrument compact enough to fit inside the rover
These NASA technological advances have resulted in other applications on Earth, including compact and portable X-ray diffraction equipment for oil and gas exploration, analysis of archaeological objects and screening of counterfeit pharmaceuticals, among other uses
"Our team is elated with these first results from our instrument," said Blake "They heighten our anticipation for future CheMin analyses in the months and miles ahead for Curiosity "
The specific sample for CheMin's first analysis was soil Curiosity scooped up at a patch of dust and sand that the team named Rocknest The sample was processed through a sieve to exclude particles larger than 0 006 inch (150 micrometers), roughly the width of a human hair The sample has at least two components: dust distributed globally in dust storms and fine sand originating more locally Unlike conglomerate rocks Curiosity investigated a few weeks ago, which are several billion years old and indicative of flowing water, the soil material CheMin has analyzed is more representative of modern processes on Mars
"Much of Mars is covered with dust, and we had an incomplete understanding of its mineralogy," said David Bish, CheMin co-investigator with Indiana University in Bloomington "We now know it is mineralogically similar to basaltic material, with significant amounts of feldspar, pyroxene and olivine, which was not unexpected Roughly half the soil is non-crystalline material, such as volcanic glass or products from weathering of the glass "
Bish said, "So far, the materials Curiosity has analyzed are consistent with our initial ideas of the deposits in Gale Crater recording a transition through time from a wet to dry environment The ancient rocks, such as the conglomerates, suggest flowing water, while the minerals in the younger soil are consistent with limited interaction with water "
During the two-year prime mission of the Mars Science Laboratory Project, researchers are using Curiosity's 10 instruments to investigate whether areas in Gale Crater ever offered environmental conditions favorable for microbial life NASA's Jet Propulsion Laboratory, Pasadena, Calif , manages the project for NASA's Science Mission Directorate, Washington, and built Curiosity and CheMin
For more information about Curiosity and its mission, visit:
http://www nasa gov/msl
For more information about a commercial application of the CheMin technology, visit:
http://blogs getty edu/iris/mars-rover-technology-helps-unlock-art-mysteries/
You can follow the mission on Facebook and Twitter at:
http://www facebook com/marscuriosity
and
http://www twitter com/marscuriosity
-end-
To subscribe to the list, send a message to: hqnews-subscribe@mediaservices nasa gov To remove your address from the list, send a message to: hqnews-unsubscribe@mediaservices nasa gov
The following information is a reminder of your current mailing list subscription:
You are subscribed to the following list: [list_name]
using the following email: example@example.com
You may automatically unsubscribe from this list at any time by visiting the following URL:
https://aus-city com/cgi-bin/dada/mail cgi/u/NASA_REPORTS/example/example com/
If the above URL is inoperable, make sure that you have copied the entire address Some mail readers will wrap a long URL and thus break this automatic unsubscribe mechanism
You may also change your subscription by visiting this list's main screen:
<[program_url]/list/[list]>
If you're still having trouble, please contact the list owner at:
<mailto:[list_owner_email]>
The following physical address is associated with this mailing list:
[physical_address]
This mailing list is announce-only.
NASA Reports list
Private list