HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT       # 4300

 

PERIOD COVERED: UT February 14, 2007 (DOY 045)

 

OBSERVATIONS SCHEDULED

 

WFPC2 10910

 

HST / Chandra Monitoring of a Dramatic Flare in the M87 Jet

 

As the nearest galaxy with an optical jet, M87 affords an unparalleled

opportunity to study extragalactic jet phenomena at the highest

resolution. During 2002, HST and Chandra monitoring of the M87 jet

detected a dramatic flare in knot HST-1 located ~1" from the nucleus.

Its optical brightness eventually increased seventy-fold and peaked in

2005; the X- rays show a similarly dramatic outburst. In both bands

HST-1 is still extremely bright and greatly outshines the galaxy

nucleus. To our knowledge this is the first incidence of an optical or

X-ray outburst from a jet region which is spatially distinct from the

core source -- this presents an unprecedented opportunity to study the

processes responsible for non- thermal variability and the X-ray

emission. We propose five epochs of HST/ACS flux monitoring during Cycle

15, as well as seven epochs of Chandra/ACIS observation {5ksec each,

five Chandra epochs contemporary with HST}. At two of the HST/ACS epochs

we also gather spectral information and map the magnetic field

structure. The results of this investigation are of key importance not

only for understanding the nature of the X-ray emission of the M87 jet,

but also for understanding flares in blazar jets, which are highly

variable, but where we have never before been able to resolve the

flaring region in the optical or X-rays. These observations will allow

us to test synchrotron emission models for the X- ray outburst,

constrain particle acceleration and loss timescales, and study the jet

dynamics associated with this flaring component.

 

NIC2 10798

 

Dark Halos and Substructure from Arcs & Einstein Rings

 

The surface brightness distribution of extended gravitationally lensed

arcs and Einstein rings contains super-resolved information about the

lensed object, and, more excitingly, about the smooth and clumpy mass

distribution of the lens galaxies. The source and lens information can

non-parametrically be separated, resulting in a direct "gravitational

image" of the inner mass-distribution of cosmologically-distant galaxies

{Koopmans 2005; Koopmans et al. 2006 [astro-ph/0601628]}. With this goal

in mind, we propose deep HST ACS-F555W/F814W and NICMOS-F160W WFC

imaging of 20 new gravitational-lens systems with spatially resolved

lensed sources, of the 35 new lens systems discovered by the Sloan Lens

ACS Survey {Bolton et al. 2005} so far, 15 of which are being imaged in

Cycle-14. Each system has been selected from the SDSS and confirmed in

two time- efficient HST-ACS snapshot programs {cycle 13&14}.

High-fidelity multi-color HST images are required {not delivered by the

420s snapshots} to isolate these lensed images {properly cleaned,

dithered and extinction-corrected} from the lens galaxy surface

brightness distribution, and apply our "gravitational maging" technique.

Our sample of 35 early-type lens galaxies to date is by far the largest,

still growing, and most uniformly selected. This minimizes selection

biases and small-number statistics, compared to smaller, often

serendipitously discovered, samples. Moreover, using the WFC provides

information on the field around the lens, higher S/N and a better

understood PSF, compared with the HRC, and one retains high spatial

resolution through drizzling. The sample of galaxy mass distributions -

determined through this method from the arcs and Einstein ring HST

images - will be studied to: {i} measure the smooth mass distribution of

the lens galaxies {dark and luminous mass are separated using the HST

images and the stellar M/L values derived from a joint stellar-dynamical

analysis of each system}; {ii} quantify statistically and individually

the incidence of mass-substructure {with or without obvious luminous

counter- parts such as dwarf galaxies}. Since dark-matter substructure

could be more prevalent at higher redshift, both results provide a

direct test of this prediction of the CDM hierarchical

structure-formation model.

 

WFPC2 10918

 

Reducing Systematic Errors on the Hubble Constant: Metallicity

Calibration of the Cepheid PL Relation

 

Reducing the systematic errors on the Hubble constant is still of

significance and of immediate importance to modern cosmology. One of the

largest remaining uncertainties in the Cepheid-based distance scale

{which itself is at the foundation of the HST Key Project determination

of H_o} which can now be addressed directly by HST, is the effect of

metallicity on the Cepheid Period-Luminosity relation. Three chemically

distinct regions in M101 will be used to directly measure and thereby

calibrate the change in zero point of the Cepheid PL relation over a

range of metallicities that run from SMC-like, through Solar, to

metallicities as high as the most metal-enriched galaxies in the pure

Hubble flow. ACS for the first time offers the opportunity to make a

precise calibration of this effect which currently accounts for at least

a third of the total systematic uncertainty on Ho. The calibration will

be made in the V and I bandpasses so as to be immediately and directly

applicable to the entire HST Cepheid-based distance scale sample, and

most especially to the highest-metallicity galaxies that were hosts to

the Type Ia supernovae, which were then used to extend the the distance

scale calibration out to cosmologically significant distances.

 

NIC1/NIC2/NIC3 8793

 

NICMOS Post-SAA calibration - CR Persistence Part 4

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non- standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science

images. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC1/NIC2/NIC3 8794

 

NICMOS Post-SAA calibration - CR Persistence Part 5

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non- standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science

images. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC3 11080

 

Exploring the Scaling Laws of Star Formation

 

As a variety of surveys of the local and distant Universe are

approaching a full census of galaxy populations, our attention needs to

turn towards understanding and quantifying the physical mechanisms that

trigger and regulate the large-scale star formation rates {SFRs} in

galaxies.

 

NIC3 11082

 

NICMOS Imaging of GOODS: Probing the Evolution of the Earliest Massive

Galaxies, Galaxies Beyond

 

Deep near-infrared imaging provides the only avenue towards

understanding a host of astrophysical problems, including: finding

galaxies and AGN at z > 7, the evolution of the most massive galaxies,

the triggering of star formation in dusty galaxies, and revealing

properties of obscured AGN. As such, we propose to observe 60 selected

areas of the GOODS North and South fields with NICMOS Camera 3 in the

F160W band pointed at known massive M > 10^11 M_0 galaxies at z > 2

discovered through deep Spitzer imaging. The depth we will reach {26.5

AB at 5 sigma} in H_160 allows us to study the internal properties of

these galaxies, including their sizes and morphologies, and to

understand how scaling relations such as the Kormendy relationship

evolved. Although NIC3 is out of focus and undersampled, it is currently

our best opportunity to study these galaxies, while also sampling enough

area to perform a general NIR survey 1/3 the size of an ACS GOODS field.

These data will be a significant resource, invaluable for many other

science goals, including discovering high redshift galaxies at z > 7,

the evolution of galaxies onto the Hubble sequence, as well as examining

obscured AGN and dusty star formation at z > 1.5. The GOODS fields are

the natural location for HST to perform a deep NICMOS imaging program,

as extensive data from space and ground based observatories such as

Chandra, GALEX, Spitzer, NOAO, Keck, Subaru, VLT, JCMT, and the VLA are

currently available for these regions. Deep high-resolution

near-infrared observations are the one missing ingredient to this

survey, filling in an important gap to create the deepest, largest, and

most uniform data set for studying the faint and distant universe. The

importance of these images will increase with time as new facilities

come on line, most notably WFC3 and ALMA, and for the planning of future

JWST observations.

 

WFPC2 10871

 

Observations of the Galilean Satellites in Support of the New Horizons

Flyby

 

On February 28 2007 the New Horizons {NH} spacecraft will fly by Jupiter

on its way to Pluto, and will conduct an extensive series of

observations of the Jupiter system, including the Galilean satellites.

We propose HST observations to support and complement the New Horizons

observations in four ways: 1} Determine the distribution and variability

of Io's plumes in the two weeks before NH closest approach, to look for

correlations with Io- derived dust streams that may be detected by New

Horizons, to understand the origin of the dust streams; 2} Imaging of

SO2 and S2 gas absorption in Io's plumes in Jupiter transit, which

cannot be done by NH; 3} Color imaging of Io's surface to determine the

effects of the plumes and volcanos seen by New Horizons on the surface-

New Horizons cannot image the sunlit surface in color due to saturation;

4} Imaging of far-UV auroral emissions from the atmospheres of Io,

Europa, and Ganymede in Jupiter eclipse, near- simultaneously with

disk-integrated NH UV spectra, to locate the source of the UV emissions

seen by NH and use the response of the satellite atmospheres to the

eclipse to constrain production mechanisms.

 

WFPC2 11023

 

WFPC2 CYCLE 15 Standard Darks - part 1

 

This dark calibration program obtains dark frames every week in order to

provide data for the ongoing calibration of the CCD dark current rate,

and to monitor and characterize the evolution of hot pixels. Over an

extended period these data will also provide a monitor of radiation

damage to the CCDs.

 

WFPC2 11025

 

WFPC2 Cycle 15 CTE Monitor

 

Monitor CTE changes during Cycle 15. Test for chip-to-chip differences

in CTE.

 

WFPC2 11095

 

Hubble Heritage Observations of NGC 6050

 

The Hubble Heritage team will use a single pointing of WFPC2 to obtain

F450W, F555W, F656N, and F814W images of NGC 6050 as part of a public

release image.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS:

10692 - REACQ(1,2,1) failed, Search Radius Limit Exceeded on FGS 1

           REACQ(1,2,1) at 10:09:24 also failed with search radius limit exceeded

           on FGS 1 and second A05 message.

 

10693 - REAcq(2,3,3) results in fine lock backup

           REAcq(2,3,3) scheduled at 045/23:23:08 - 23:31:13 resulted in fine lock

           backup (2,0,2) using FGS2, due to (QF3STOPF) stop flag indication on the

           secondary FGS3. Pre-reacquisition OBADs showed (RSS) attitude correction

           values of 1040.47 and 3.79 arcseconds. Post-reacquisition OBAD/MAP

           showed (RSS) value of 12.36 arcseconds.

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                       SCHEDULED      SUCCESSFUL 

FGS GSacq                07                 07                                                                                                                               

FGS REacq                07                 06

OBAD with Maneuver 28                  28               

 

SIGNIFICANT EVENTS: (None)