HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT      # 4306

 

PERIOD COVERED: UT February 23,24,25, 2007 (DOY 054,055,056)

 

OBSERVATIONS SCHEDULED

 

NIC1/NIC2/NIC3 8794

 

NICMOS Post-SAA calibration - CR Persistence Part 5

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non- standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science

images. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

WFPC2 11093

 

Hubble Heritage Observations of PNe with WFPC2

 

This is a proposal for observation of a set of PNe using a common WFPC2

observation sequence.

 

WFPC2 11092

 

Hubble Heritage Observations of Arp 87

 

The Hubble Heritage team will use a single pointing of WFPC2 to obtain

F450W, F555W, F656N, and F814W images of Arp 87 as part of a public

release image.

 

NIC3 11080

 

Exploring the Scaling Laws of Star Formation

 

As a variety of surveys of the local and distant Universe are

approaching a full census of galaxy populations, our attention needs to

turn towards understanding and quantifying the physical mechanisms that

trigger and regulate the large-scale star formation rates {SFRs} in

galaxies.

 

NIC1 11061

 

NICMOS Imaging of Grism Spectrophotometric Standards

 

In this program we will take imaging observations with all 3 cameras

with a range of filters of a significant number of stars that are part

of the spectroscopic standard star project. These stars will form the

fainter reference star backbone for programs as JWST, Sophia, and SNAP.

With this program we will: 1. Accurately calibrate relative brightness

of standard stars, which can be done more accurately with photometry

than with spectroscopy. This has been proven to be vary valuable to

straighten out the problems in the spectroscopic data reduction and

calibrations so far. 2. Increase the number of stars over a large

magnitude range to provide a more accurate cross check of our count rate

dependent non-linearity correction 3. Include stars with radically

different {very red} spectra to investigate whether the filter curves as

measured before flight are still valid by comparing the throughput

estimates from these stars to those used for the standard calibration.

4. Repeat a few standard star observations from cycle 7 and post-NCS

installation SMOV, to increase the accuracy in the change in sensitivity

measurement with just a few observations thanks to the long baseline.

 

ACS/WFC 11052

 

Internal Flat Fields

 

The stability of the CCD P-flat fields will be monitored using the

calibration lamps and a sub-sample of the filter set. High signal

observations will be used to assess the stability of the pixel-to-pixel

flat field structure and to monitor the position of the dust motes.

 

WFPC2 11029

 

WFPC2 CYCLE 15 Intflat Linearity Check and Filter Rotation Anomaly

Monitor

 

Intflat observations will be taken to provide a linearity check: the

linearity test consists of a series of intflats in F555W, in each gain

and each shutter. A combination of intflats, visflats, and earthflats

will be used to check the repeatability of filter wheel motions.

{Intflat sequences tied to decons, visits 1-18 in prop 10363, have been

moved to the cycle 15 decon proposal xxxx for easier scheduling.} Note:

long-exposure WFPC2 intflats must be scheduled during ACS anneals to

prevent stray light from the WFPC2 lamps from contaminating long ACS

external exposures.

 

ACS/WFC 10918

 

Reducing Systematic Errors on the Hubble Constant: Metallicity

Calibration of the Cepheid PL Relation

 

Reducing the systematic errors on the Hubble constant is still of

significance and of immediate importance to modern cosmology. One of the

largest remaining uncertainties in the Cepheid-based distance scale

{which itself is at the foundation of the HST Key Project determination

of H_o} which can now be addressed directly by HST, is the effect of

metallicity on the Cepheid Period-Luminosity relation. Three chemically

distinct regions in M101 will be used to directly measure and thereby

calibrate the change in zero point of the Cepheid PL relation over a

range of metallicities that run from SMC-like, through Solar, to

metallicities as high as the most metal-enriched galaxies in the pure

Hubble flow. ACS for the first time offers the opportunity to make a

precise calibration of this effect which currently accounts for at least

a third of the total systematic uncertainty on Ho. The calibration will

be made in the V and I bandpasses so as to be immediately and directly

applicable to the entire HST Cepheid-based distance scale sample, and

most especially to the highest-metallicity galaxies that were hosts to

the Type Ia supernovae, which were then used to extend the the distance

scale calibration out to cosmologically significant distances.

 

WFPC2 10890

 

Morphologies of the Most Extreme High-Redshift Mid-IR-Luminous Galaxies

 

The formative phase of the most massive galaxies may be extremely

luminous, characterized by intense star- and AGN-formation. Till now,

few such galaxies have been unambiguously identified at high redshift,

restricting us to the study of low-redshift ultraluminous infrared

galaxies as possible analogs. We have recently discovered a sample of

objects which may indeed represent this early phase in galaxy formation,

and are undertaking an extensive multiwavelength study of this

population. These objects are bright at mid-IR wavelengths

{F[24um]>0.8mJy}, but deep ground based imaging suggests extremely faint

{and in some cases extended} optical counterparts {R~24-27}. Deep K-band

images show barely resolved galaxies. Mid-infrared spectroscopy with

Spitzer/IRS reveals that they have redshifts z ~ 2-2.5, suggesting

bolometric luminosities ~10^{13-14}Lsun! We propose to obtain deep ACS

F814W and NIC2 F160W images of these sources and their environs in order

to determine kpc-scale morphologies and surface photometry for these

galaxies. The proposed observations will help us determine whether these

extreme objects are merging systems, massive obscured starbursts {with

obscuration on kpc scales!} or very reddened {locally obscured} AGN

hosted by intrinsically low-luminosity galaxies.

 

WFPC2 10871

 

Observations of the Galilean Satellites in Support of the New Horizons

Flyby

 

On February 28 2007 the New Horizons {NH} spacecraft will fly by Jupiter

on its way to Pluto, and will conduct an extensive series of

observations of the Jupiter system, including the Galilean satellites.

We propose HST observations to support and complement the New Horizons

observations in four ways: 1} Determine the distribution and variability

of Io's plumes in the two weeks before NH closest approach, to look for

correlations with Io- derived dust streams that may be detected by New

Horizons, to understand the origin of the dust streams; 2} Imaging of

SO2 and S2 gas absorption in Io's plumes in Jupiter transit, which

cannot be done by NH; 3} Color imaging of Io's surface to determine the

effects of the plumes and volcanos seen by New Horizons on the surface-

New Horizons cannot image the sunlit surface in color due to saturation;

4} Imaging of far-UV auroral emissions from the atmospheres of Io,

Europa, and Ganymede in Jupiter eclipse, near- simultaneously with

disk-integrated NH UV spectra, to locate the source of the UV emissions

seen by NH and use the response of the satellite atmospheres to the

eclipse to constrain production mechanisms.

 

ACS/SBC 10862

 

Comprehensive Auroral Imaging of Jupiter and Saturn during the

International Heliophysical Year

 

A comprehensive set of observations of the auroral emissions from

Jupiter and Saturn is proposed for the International Heliophysical Year

in 2007, a unique period of especially concentrated measurements of

space physics phenomena throughout the solar system. We propose to

determine the physical relationship of the various auroral processes at

Jupiter and Saturn with conditions in the solar wind at each planet.

This can be accomplished with campaigns of observations, with a sampling

interval not to exceed one day, covering at least one solar rotation.

The solar wind plasma density approaching Jupiter will be measured by

the New Horizons spacecraft, and a separate campaign near opposition in

May 2007 will determine the effect of large-scale variations in the

interplanetary magnetic field {IMF} on the Jovian aurora by

extrapolation from near-Earth solar wind measurements. A similar Saturn

campaign near opposition in Jan. 2007 will combine extrapolated solar

wind data with measurements from a wide range of locations within the

Saturn magnetosphere by Cassini. In the course of making these

observations, it will be possible to fully map the auroral footprints of

Io and the other satellites to determine both the local magnetic field

geometry and the controlling factors in the electromagnetic interaction

of each satellite with the corotating magnetic field and plasma density.

Also in the course of making these observations, the auroral emission

properties will be compared with the properties of the near-IR

ionospheric emissions {from ground-based observations} and non thermal

radio emissions, from ground-based observations for Jupiter?s decametric

radiation and Cassini plasma wave measurements of the Saturn Kilometric

Radiation {SKR}.

 

ACS/SBC 10810

 

The Gas Dissipation Timescale: Constraining Models of Planet Formation

 

We propose to constrain planet-formation models by searching for

molecular hydrogen emission around young {10-50 Myr} solar-type stars

that have evidence for evolved dust disks. Planet formation models show

that the presence of gas in disks is crucial to the formation of BOTH

giant and terrestrial planets, influences dust dynamics, and through

tidal interactions with giant planets leads to orbital migration.

However, there is a lack of systematic information on the presence and

lifetime of gas residing at planet-forming radii. We will use a newly

identified broad continuum emission feature of molecular hydrogen at

1600 Angstrom to search for residual gas within an orbital radius of

5-10 AU around young stars that have evolved beyond the optically thick

T Tauri phase. These observations will enable the most sensitive probe

to date of remant gas in circumstellar disks, detecting surfaces

densites of ~0.0001 g/cm^2, or less than 10^-5 of the theoretical

"mininum mass" solar nebula from which our solar system is thought to

have formed. Our observations are designed to be synergistic with

ongoing searches for gas emission that is being performed using the

Spitzer Space Telescope in that the proposed HST observations are ~100

times more sensitive and will have 50 times higher angular resolution.

These combined studies will provide the most comprehensive view of

residual gas in proto-planetary disks and can set important constraints

on models of planet formation.

 

NIC2 10808

 

Morphologies of spectroscopically-confirmed "red and dead" galaxies at

z~2.5

 

Using a combination of wide-field near-infrared imaging and very deep

follow-up near-infrared spectroscopy we have identified a population of

massive "red and dead" galaxies at z~2.5. The galaxies lack emission

lines and have strong Balmer/4000 Angstrom breaks, demonstrating

directly that they have evolved stellar populations. These objects are

very likely progenitors of massive ellipticals today and may be

descendants of the first generation of galaxies. We propose to image 10

of these objects with the NIC2 camera to determine their morphologies.

The goals are to 1} determine whether they have the sizes of present-day

early-types or are more compact, as predicted by models, 2} determine

the morphology, using visual classification and quantitative methods,

and 3} constrain the evolution of the Kormendy relation from z~2.5 to

the present. These observations will show whether the oldest and most

massive galaxies at z~2.5 were already fully formed or still in the

process of assembly.

 

NIC2, ACS/WFC 10802

 

SHOES-Supernovae, HO, for the Equation of State of Dark energy

 

The present uncertainty in the value of the Hubble constant {resulting

in an uncertainty in Omega_M} and the paucity of Type Ia supernovae at

redshifts exceeding 1 are now the leading obstacles to determining the

nature of dark energy. We propose a single, integrated set of

observations for Cycle 15 that will provide a 40% improvement in

constraints on dark energy. This program will observe known Cepheids in

six reliable hosts of Type Ia supernovae with NICMOS, reducing the

uncertainty in H_0 by a factor of two because of the smaller dispersion

along the instability strip, the diminished extinction, and the weaker

metallicity dependence in the infrared. In parallel with ACS, at the

same time the NICMOS observations are underway, we will discover and

follow a sample of Type Ia supernovae at z > 1. Together, these

measurements, along with prior constraints from WMAP, will provide a

great improvement in HST's ability to distinguish between a static,

cosmological constant and dynamical dark energy. The Hubble Space

Telescope is the only instrument in the world that can make these IR

measurements of Cepheids beyond the Local Group, and it is the only

telescope in the world that can be used to find and follow supernovae at

z > 1. Our program exploits both of these unique capabilities of HST to

learn more about one of the greatest mysteries in science.

 

ACS/WFC 10798

 

Dark Halos and Substructure from Arcs & Einstein Rings

 

The surface brightness distribution of extended gravitationally lensed

arcs and Einstein rings contains super-resolved information about the

lensed object, and, more excitingly, about the smooth and clumpy mass

distribution of the lens galaxies. The source and lens information can

non-parametrically be separated, resulting in a direct "gravitational

image" of the inner mass-distribution of cosmologically-distant galaxies

{Koopmans 2005; Koopmans et al. 2006 [astro-ph/0601628]}. With this goal

in mind, we propose deep HST ACS-F555W/F814W and NICMOS-F160W WFC

imaging of 20 new gravitational-lens systems with spatially resolved

lensed sources, of the 35 new lens systems discovered by the Sloan Lens

ACS Survey {Bolton et al. 2005} so far, 15 of which are being imaged in

Cycle-14. Each system has been selected from the SDSS and confirmed in

two time- efficient HST-ACS snapshot programs {cycle 13&14}.

High-fidelity multi-color HST images are required {not delivered by the

420s snapshots} to isolate these lensed images {properly cleaned,

dithered and extinction-corrected} from the lens galaxy surface

brightness distribution, and apply our "gravitational maging" technique.

Our sample of 35 early-type lens galaxies to date is by far the largest,

still growing, and most uniformly selected. This minimizes selection

biases and small-number statistics, compared to smaller, often

serendipitously discovered, samples. Moreover, using the WFC provides

information on the field around the lens, higher S/N and a better

understood PSF, compared with the HRC, and one retains high spatial

resolution through drizzling. The sample of galaxy mass distributions -

determined through this method from the arcs and Einstein ring HST

images - will be studied to: {i} measure the smooth mass distribution of

the lens galaxies {dark and luminous mass are separated using the HST

images and the stellar M/L values derived from a joint stellar-dynamical

analysis of each system}; {ii} quantify statistically and individually

the incidence of mass-substructure {with or without obvious luminous

counter- parts such as dwarf galaxies}. Since dark-matter substructure

could be more prevalent at higher redshift, both results provide a

direct test of this prediction of the CDM hierarchical

structure-formation model.

 

NIC3 10792

 

Quasars at Redshift z=6 and Early Star Formation History

 

We propose to observe four high-redshift quasars {z=6} in the NIR in

order to estimate relative Fe/Mg abundances and the central black hole

mass. The results of this study will critically constrain models of

joint quasar and galaxy formation, early star formation, and the growth

of supermassive black holes. Different time scales and yields for

alpha-elements {like O or Mg} and for iron result into an iron

enrichment delay of ~0.3 to 0.6 Gyr. Hence, despite the well-known

complexity of the FeII emission line spectrum, the ratio iron/alpha -

element is a potentially useful cosmological clock. The central black

hole mass will be estimated based on a recently revised back hole mass -

luminosity relationship. The time delay of the iron enrichment and the

time required to form a supermassive black hole {logM>8 Msol, tau

~0.5Gyr} as evidenced by quasar activity will be used to date the

beginning of the first intense star formation, marking the formation of

the first massive galaxies that host luminous quasars, and to constrain

the epoch when supermassive black holes start to grow by accretion.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS:

10713 - GSAcq(1,3,3) Failed to RGA hold @056/0110z

           At AOS, 01:23:45, noticed that GSAcq scheduled at 01:09:53 had failed.

           The only indication present was an ESB MSG a0a (FGS Fine Lock failed -

           Timed out waiting for fine lock)

           OBAD RSS was 8.12

 

           The REacq(1,3,3) scheduled at 02:43:01 also failed. Observed FGS 1

           during Reacq, FGS 1 never achieved fine lock. Maximum observed PMT

           counts was approximately 15.

           OBAD RSS wa 5.90 a-s

 

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                          SCHEDULED      SUCCESSFUL   

FGS GSacq                 21                     20             

FGS REacq                 18                     17             

OBAD with Maneuver   68                     68               

 

SIGNIFICANT EVENTS: (None)