Notice: For the foreseeable future, the daily reports may contain

apparent discrepancies between some proposal descriptions and the listed

instrument usage. This is due to the conversion of previously approved

ACS WFC or HRC observations into WFPC2, or NICMOS observations

subsequent to the loss of ACS CCD science capability in late January.

 

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT      # 4344

 

PERIOD COVERED: UT April 18, 2007 (DOY 108)

 

OBSERVATIONS SCHEDULED

 

WFPC2 10798

 

Dark Halos and Substructure from Arcs & Einstein Rings

 

The surface brightness distribution of extended gravitationally lensed

arcs and Einstein rings contains super-resolved information about the

lensed object, and, more excitingly, about the smooth and clumpy mass

distribution of the lens galaxies. The source and lens information can

non-parametrically be separated, resulting in a direct "gravitational

image" of the inner mass-distribution of cosmologically-distant galaxies

{Koopmans 2005; Koopmans et al. 2006 [astro-ph/0601628]}. With this goal

in mind, we propose deep HST ACS-F555W/F814W and NICMOS-F160W WFC

imaging of 20 new gravitational-lens systems with spatially resolved

lensed sources, of the 35 new lens systems discovered by the Sloan Lens

ACS Survey {Bolton et al. 2005} so far, 15 of which are being imaged in

Cycle-14. Each system has been selected from the SDSS and confirmed in

two time- efficient HST-ACS snapshot programs {cycle 13&14}.

High-fidelity multi-color HST images are required {not delivered by the

420s snapshots} to isolate these lensed images {properly cleaned,

dithered and extinction-corrected} from the lens galaxy surface

brightness distribution, and apply our "gravitational maging" technique.

Our sample of 35 early-type lens galaxies to date is by far the largest,

still growing, and most uniformly selected. This minimizes selection

biases and small-number statistics, compared to smaller, often

serendipitously discovered, samples. Moreover, using the WFC provides

information on the field around the lens, higher S/N and a better

understood PSF, compared with the HRC, and one retains high spatial

resolution through drizzling. The sample of galaxy mass distributions -

determined through this method from the arcs and Einstein ring HST

images - will be studied to: {i} measure the smooth mass distribution of

the lens galaxies {dark and luminous mass are separated using the HST

images and the stellar M/L values derived from a joint stellar-dynamical

analysis of each system}; {ii} quantify statistically and individually

the incidence of mass-substructure {with or without obvious luminous

counter- parts such as dwarf galaxies}. Since dark-matter substructure

could be more prevalent at higher redshift, both results provide a

direct test of this prediction of the CDM hierarchical

structure-formation model.

 

WFPC2 10809

 

The nature of "dry" mergers in the nearby Universe

 

Recent studies have shown that "dry" mergers of red, bulge-dominated

galaxies at low redshift play an important role in shaping today's most

massive ellipticals. These mergers have been identified in extremely

deep ground-based images of red sequence galaxies at z ~ 0.1. The

ground-based images reach surface brightness limits of AB ~ 29, but lack

the resolution to study the morphologies of the galaxies inside the

effective radius. Here we propose to obtain ACS images of a

representative sample of 40 of these red sequence galaxies: 15 ongoing

dry mergers, 15 remnants, and 10 undisturbed objects. We will measure

the isophote shapes and ellipticities of the galaxies, their dust

content, morphological fine structure {shells and ripples}, AGN content,

and their location on the Fundamental Plane. By comparing galaxies in

different stages of the merging process we can constrain the amount of

gas associated with these red mergers, the effect of active nuclei, and

track structural changes. As two galaxies can be observed in a single

orbit 20 orbits are requested to observe the 40 galaxies.

 

WFPC2 10886

 

The Sloan Lens ACS Survey: Towards 100 New Strong Lenses

 

As a continuation of the highly successful Sloan Lens ACS {SLACS} Survey

for new strong gravitational lenses, we propose one orbit of ACS-WFC

F814W imaging for each of 50 high-probability strong galaxy-galaxy lens

candidates. These observations will confirm new lens systems and permit

immediate and accurate photometry, shape measurement, and mass modeling

of the lens galaxies. The lenses delivered by the SLACS Survey all show

extended source structure, furnishing more constraints on the projected

lens potential than lensed-quasar image positions. In addition, SLACS

lenses have lens galaxies that are much brighter than their lensed

sources, facilitating detailed photometric and dynamical observation of

the former. When confirmed lenses from this proposal are combined with

lenses discovered by SLACS in Cycles 13 and 14, we expect the final

SLACS lens sample to number 80--100: an approximate doubling of the

number of known galaxy-scale strong gravitational lenses and an

order-of-magnitude increase in the number of optical Einstein rings. By

virtue of its homogeneous selection and sheer size, the SLACS sample

will allow an unprecedented exploration of the mass structure of the

early-type galaxy population as a function of all other observable

quantities. This new sample will be a valuable resource to the

astronomical community by enabling qualitatively new strong lensing

science, and as such we will waive all but a short {3-month} proprietary

period on the observations.

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA calibration - CR Persistence Part 6

 

A new proceedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and everytime a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non- standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science i

mages. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

WFPC2 10884

 

The Dynamical Structure of Ellipticals in the Coma and Abell 262

Clusters

 

We propose to obtain images of 13 relatively luminous early type

galaxies in the Coma cluster and Abell 262 for which we have already

collected ground based major and minor axis spectra and images. The

higher resolution HST images will enable us to study the central regions

of these galaxies which is crucial to our dynamical modelling. The

complete data set will allow us to perform a full dynamical analysis and

to derive the dark matter content and distribution, the stellar orbital

structure, and the stellar population properties of these objects,

probing the predictions of galaxy formation models. The dynamical

analysis will be performed using an up-to-date axi-symmetric orbit

superposition code.

 

WFPC2 11083

 

The Structure, Formation and Evolution of Galactic Cores and Nuclei

 

A surprising result has emerged from the ACS Virgo Cluster Survey

{ACSVCS}, a program to obtain ACS/WFC gz imaging for a large, unbiased

sample of 100 early-type galaxies in the Virgo Cluster. On subarcsecond

scales {i.e., <0.1"-1"}, the HST brightness profiles vary systematically

from the brightest giants {which have nearly constant surface brightness

cores} to the faintest dwarfs {which have compact stellar nuclei}.

Remarkably, the fraction of galaxy mass contributed by the nuclei in the

faint galaxies is identical to that contributed by supermassive black

holes in the bright galaxies {0.2%}. These findings strongly suggest

that a single mechanism is responsible for both types of Central Massive

Object: most likely internally or externally modulated gas inflows that

feed central black holes or lead to the formation of "nuclear star

clusters". Understanding the history of gas accretion, star formation

and chemical enrichment on subarcsecond scales has thus emerged as the

single most pressing question in the study of nearby galactic nuclei,

either active or quiescent. We propose an ambitious HST program {199

orbits} that constitutes the next, obvious step forward:

high-resolution, ultraviolet {WFPC2/F255W} and infrared {NIC1/F160W}

imaging for the complete ACSVCS sample. By capitalizing on HST's unique

ability to provide high-resolution images with a sharp and stable PSF at

UV and IR wavelengths, we will leverage the existing optical HST data to

obtain the most complete picture currently possible for the history of

star formation and chemical enrichment on these small scales. Equally

important, this program will lead to a significant improvement in the

measured structural parameters and density distributions for the stellar

nuclei and the underlying galaxies, and provide a sensitive measure of

"frosting" by young stars in the galaxy cores. By virtue of its superb

image quality and stable PSF, NICMOS is the sole instrument capable of

the IR observations proposed here. In the case of the WFPC2

observations, high-resolution UV imaging {< 0.1"} is a capability unique

to HST, yet one that could be lost at any any time.

 

WFPC2 11085

 

Europa in Eclipse: Tenuous Atmosphere, Electromagnetic Activity and

Surface Luminescence HST Proposal 11085

 

We propose to image Europa during its orbital eclipse by Jupiter. This

will form the basis of an investigation into the nature of the tenuous

atmosphere, electromagnetic environment and surface material of Europa.

We will compare the FUV oxygen line at 1356A to the optical line at

6300A and seek optical auroral hydrogen emission in Halpha. With broad

continuum filters, we will search for optical emissions from other

atmospheric constituents and for fluorescence of the surface material,

arising from the very high level of incident energetic particle

radiation. The high spatial resolution of ACS will allow us to fully

resolve scales of interest and allow us to distinguish easily the

different terrains on Europa's surface. In particular we wish to compare

luminesence in regions dominated by ice to those of potentially organic

red material.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST:

17597-7 - FHST Stuck-on-Bottom Macro Execution

18037-3 - MSS/CSS KF Initialization Convergence Testing

18034-0 - FSW 3.1A EEPROM Installation

 

COMPLETED OPS NOTES: (None)

 

                       SCHEDULED      SUCCESSFUL

FGS GSacq               08                  08               

FGS REacq               04                  04                

OBAD with Maneuver 24                  24               

 

SIGNIFICANT EVENTS:

 

FSW 3.1A was successfully installed in HST486 EEPROM

 

The post installation EEPROM dump completed at 108/13:55:05 and was

Successfully verified by FSW. The Bit Memory Integrity Check was enabled

at 14:09:01.

 

The Kalman Filter was restarted at 108/13:26 during orbit day and during

a T2G guiding interval. The filter was activated with the default

configuration of MSS and CSS sensor inputs enabled. All UKF parameters

showed nominal convergence and steady-state operation. The test was an

MSS/CSS Initialization Test Case with the spacecraft inertially fixed

during a fast changing B-field in orbit day (M_C_INF,case #7).