Notice: Due to the conversion of some ACS WFC or HRC observations into

WFPC2, or NICMOS observations after the loss of ACS CCD science

capability in January, there may be an occasional discrepancy between a

proposal's listed (and correct) instrument usage and the abstract that

follows it.

 

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT # 4403

 

PERIOD COVERED: UT July 12, 2007 (DOY 193)

 

OBSERVATIONS SCHEDULED

 

FGS 11210

 

The Architecture of Exoplanetary Systems

 

Are all planetary systems coplanar? Concordance cosmogony makes that

prediction. It is, however, a prediction of extrasolar planetary system

architecture as yet untested by direct observation for main sequence

stars other than the Sun. To provide such a test, we propose to carry

out FGS astrometric studies on four stars hosting seven companions. Our

understanding of the planet formation process will grow as we match not

only system architecture, but formed planet mass and true distance from

the primary with host star characteristics for a wide variety of host

stars and exoplanet masses. We propose that a series of FGS astrometric

observations with demonstrated 1 millisecond of arc per-observation

precision can establish the degree of coplanarity and component true

masses for four extrasolar systems: HD 202206 {brown dwarf+planet}; HD

128311 {planet+planet}, HD 160691 = mu Arae {planet+planet}, and HD

222404AB = gamma Cephei {planet+star}. In each case the companion is

identified as such by assuming that the minimum mass is the actual mass.

For the last target, a known stellar binary system, the companion orbit

is stable only if coplanar with the AB binary orbit.

 

FGS 11212

 

Filling the Period Gap for Massive Binaries

 

The current census of binaries among the massive O-type stars is

seriously incomplete for systems in the period range from years to

millennia because the radial velocity variations are too small and the

angular separations too close for easy detection. Here we propose to

discover binaries in this observational gap through a Faint Guidance

Sensor SNAP survey of relatively bright targets listed in the Galactic O

Star Catalog. Our primary goal is to determine the binary frequency

among those in the cluster/association, field, and runaway groups. The

results will help us assess the role of binaries in massive star

formation and in the processes that lead to the ejection of massive

stars from their natal clusters. The program will also lead to the

identification of new, close binaries that will be targets of long term

spectroscopic and high angular resolution observations to determine

their masses and distances. The results will also be important for the

interpretation of the spectra of suspected and newly identified binary

and multiple systems.

 

NIC3 11080

 

Exploring the Scaling Laws of Star Formation

 

As a variety of surveys of the local and distant Universe are

approaching a full census of galaxy populations, our attention needs to

turn towards understanding and quantifying the physical mechanisms that

trigger and regulate the large-scale star formation rates {SFRs} in

galaxies.

 

WFPC2 10818

 

Very Young Globular Clusters in M31 ?

 

We propose to use HST's unique high spatial resolution imaging

capabilities to conclusively confirm or refute the presence of alleged

very young globular clusters in M31. Such young globular clusters with

ages < 3 Gyr are not present in our galaxy, and, if real, would lead to

a striking difference in the age distribution of the GCs between M31 and

the Millky Way. If the apparent presence of very young globular clusters

in M31 is confirmed through our proposed ACS imaging {now WFPC2 imaging}

with HST, this would suggest major differences in the history of

assembly of the two galaxies, with probable substantial late accretion

into M31 which did not occur in our own galaxy.

 

WFPC2 10902

 

The Nearest Luminous Blue Compact Galaxies: A Window on Galaxy Formation

 

As we move to intermediate and high redshifts, Luminous Blue Compact

Galaxies {LBCGs} become increasingly common. The nearest LBCGs, with

their violent starbursts and rich populations of super star clusters

{SSCs} and globular clusters {GCs}, thus provide ideal laboratories for

studying galaxy evolution. Many LBCGs appear to be involved in mergers

between dwarf galaxies, triggering their starbursts. The starburst

regions in LBCGs consist of numerous young star clusters, whose

populations are both easily measurable with HST and easily modelled.

Studying cluster populations provides a powerful probe of the starburst

and merger history which is possible neither for closer objects {of

which there are too few} or for those at high redshift {which are too

far away}. We have previously studied the closest LBCG with WFPC2 and

found hundreds of bright compact SSCs and GCs. In particular, we found a

population of intermediate-age {~2 Gyr} GCs, indicating a past event of

massive cluster formation. We now propose a multi-wavelength study of

the three other LBCGs with the highest known number of SSCs. The

extinction is small in these galaxies and age estimates robust. The age

distribution of GCs and SSCs will be used to study the past evolution of

the galaxies. For each LBCG, we will map its cluster formation history,

unveiling its merger and starburst history, and thereby shed light on

some of the processes involved in galaxy evolution at high redshift.

 

WFPC2 11079

 

Treasury Imaging of Star Forming Regions in the Local Group:

Complementing the GALEX and NOAO Surveys

 

We propose to use WFPC2 to image the most interesting star-forming

regions in the Local Group galaxies, to resolve their young stellar

populations. We will use a set of filters including F170W, which is

critical to detect and characterize the most massive stars, to whose hot

temperatures colors at longer wavelengths are not sensitive. WFPC2's

field of view ideally matches the typical size of the star-forming

regions, and its spatial resolution allows us to measure indvidual

stars, given the proximity of these galaxies. The resulting H-R diagrams

will enable studies of star- formation properties in these regions,

which cover largely differing metallicities {a factor of 17, compared to

the factor of 4 explored so far} and characteristics. The results will

further our understanding of the star-formation process, of the

interplay between massive stars and environment, the properties of dust,

and will provide the key to interpret integrated measurements of

star-formation indicators {UV, IR, Halpha} available for several

hundreds more distant galaxies. Our recent deep surveys of these

galaxies with GALEX {FUV, NUV} and ground-based imaging {UBVRI, Halpha,

[OIII] and [SII]} provided the identification of the most relevant SF

sites. In addition to our scientific analysis, we will provide catalogs

of HST photometry in 6 bands, matched corollary ground-based data, and

UV, Halpha and IR integrated measurements of the associations, for

comparison of integrated star-formation indices to the resolved

populations. We envisage an EPO component.

 

WFPC2 11178

 

Probing Solar System History with Orbits, Masses, and Colors of

Transneptunian Binaries

 

The recent discovery of numerous transneptunian binaries {TNBs} opens a

window into dynamical conditions in the protoplanetary disk where they

formed as well as the history of subsequent events which sculpted the

outer Solar System and emplaced them onto their present day heliocentric

orbits. To date, at least 47 TNBs have been discovered, but only about a

dozen have had their mutual orbits and separate colors determined,

frustrating their use to investigate numerous important scientific

questions. The current shortage of data especially cripples scientific

investigations requiring statistical comparisons among the ensemble

characteristics. We propose to obtain sufficient astrometry and

photometry of 23 TNBs to compute their mutual orbits and system masses

and to determine separate primary and secondary colors, roughly tripling

the sample for which this information is known, as well as extending it

to include systems of two near-equal size bodies. To make the most

efficient possible use of HST, we will use a Monte Carlo technique to

optimally schedule our observations.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

                             SCHEDULED      SUCCESSFUL    

FGS GSacq                    10                   10                     

FGS REacq                      4                    4             

OBAD with Maneuver      28                   28                   

 

COMPLETED OPS NOTES: (None)

 

SIGNIFICANT EVENTS: (None)