Notice: Due to the conversion of some ACS WFC or HRC observations into

WFPC2, or NICMOS observations after the loss of ACS CCD science

capability in January, there may be an occasional discrepancy between a

proposal's listed (and correct) instrument usage and the abstract that

follows it.

 

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT      # 4419

 

PERIOD COVERED: UT August 3,4,5 2007 (DOY 215,216,217)

 

OBSERVATIONS SCHEDULED

 

NIC1/NIC2/NIC3 8794

 

NICMOS Post-SAA calibration - CR Persistence Part 5

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non-standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science

images. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

FGS 11295

 

Trigonometric Calibration of the Distance Scale for Classical Novae

 

The distance scale for classical novae is important for understanding

the stellar physics of their thermonuclear runaways, their contribution

to Galactic nucleosynthesis, and their use as extragalactic standard

candles. Although it is known that there is a relationship between their

absolute magnitudes at maximum light and their subsequent rates of

decline--the well-known maximum-magnitude rate-of-decline {MMRD}

relation--it is difficult to set the zero-point for the MMRD because of

the very uncertain distances of Galactic novae. We propose to measure

precise trigonometric parallaxes for the quiescent remnants of the four

nearest classical novae. We will use the Fine Guidance Sensors, which

are proven to be capable of measuring parallaxes with errors of ~0.2

mas, well below what is possible from the ground.

 

WFPC2 11292

 

The Ring Plane Crossings of Uranus in 2007

 

The rings of Uranus turn edge-on to Earth in May and August 2007. In

between, we will have a rare opportunity to see the unlit face of the

rings. With the nine optically thick rings essentially invisible, we will

observe features and phenomena that are normally lost in their glare. We

will use this opportunity to search thoroughly for the embedded

"shepherd" moons long believed to confine the edges of the rings,

setting a mass limit roughly 10 times smaller than that of the smallest

shepherd currently known, Cordelia. We will measure the vertical

thicknesses of the rings and study the faint dust belts only known to

exist from a single Voyager image. We will also study the colors of the

newly-discovered faint, outer rings; recent evidence suggests that one

ring is red and the other blue, implying that each ring is dominated by

a different set of physical processes. We will employ near-edge-on

photometry from 2006 and 2007 to derive the particle filling factor

within the rings, to observe how ring epsilon responds to the "traffic

jam" as particles pass through its narrowest point, and to test the

latest models for preserving eccentricities and apse alignment within

the rings. Moreover, this data set will allow us to continue monitoring

the motions of the inner moons, which have been found to show possibly

chaotic orbital variations; by nearly doubling the time span of the

existing Hubble astrometry, the details of the variations will become

much clearer.

 

FGS 11210

 

The Architecture of Exoplanetary Systems

 

Are all planetary systems coplanar? Concordance cosmogony makes that

prediction. It is, however, a prediction of extrasolar planetary system

architecture as yet untested by direct observation for main sequence

stars other than the Sun. To provide such a test, we propose to carry

out FGS astrometric studies on four stars hosting seven companions. Our

understanding of the planet formation process will grow as we match not

only system architecture, but formed planet mass and true distance from

the primary with host star characteristics for a wide variety of host

stars and exoplanet masses. We propose that a series of FGS astrometric

observations with demonstrated 1 millisecond of arc per-observation

precision can establish the degree of coplanarity and component true

masses for four extrasolar systems: HD 202206 {brown dwarf+planet}; HD

128311 {planet+planet}, HD 160691 = mu Arae {planet+planet}, and HD

222404AB = gamma Cephei {planet+star}. In each case the companion is

identified as such by assuming that the minimum mass is the actual mass.

For the last target, a known stellar binary system, the companion orbit

is stable only if coplanar with the AB binary orbit.

 

WFPC2 11202

 

The Structure of Early-type Galaxies: 0.1-100 Effective Radii

 

The structure, formation and evolution of early-type galaxies is still

largely an open problem in cosmology: how does the Universe evolve from

large linear scales dominated by dark matter to the highly non-linear

scales of galaxies, where baryons and dark matter both play important,

interacting, roles? To understand the complex physical processes

involved in their formation scenario, and why they have the tight

scaling relations that we observe today {e.g. the Fundamental Plane}, it

is critically important not only to understand their stellar structure,

but also their dark-matter distribution from the smallest to the largest

scales. Over the last three years the SLACS collaboration has developed

a toolbox to tackle these issues in a unique and encompassing way by

combining new non-parametric strong lensing techniques, stellar

dynamics, and most recently weak gravitational lensing, with

high-quality Hubble Space Telescope imaging and VLT/Keck spectroscopic

data of early-type lens systems. This allows us to break degeneracies

that are inherent to each of these techniques separately and probe the

mass structure of early-type galaxies from 0.1 to 100 effective radii.

The large dynamic range to which lensing is sensitive allows us both to

probe the clumpy substructure of these galaxies, as well as their

low-density outer haloes. These methods have convincingly been

demonstrated, by our team, using smaller pilot-samples of SLACS lens

systems with HST data. In this proposal, we request observing time with

WFPC2 and NICMOS to observe 53 strong lens systems from SLACS, to obtain

complete multi-color imaging for each system. This would bring the total

number of SLACS lens systems to 87 with completed HST imaging and

effectively doubles the known number of galaxy-scale strong lenses. The

deep HST images enable us to fully exploit our new techniques, beat down

low-number statistics, and probe the structure and evolution of early-

type galaxies, not only with a uniform data-set an order of magnitude

larger than what is available now, but also with a fully coherent and

self-consistent methodological approach!

 

WFPC2/NIC3 11188

 

First Resolved Imaging of Escaping Lyman Continuum

 

The emission from star-forming galaxies appears to be responsible for

reionization of the universe at z>6. However, the models that attempt to

describe the detailed impact of high- redshift galaxies on the

surrounding inter-galactic medium {IGM} are strongly dependent upon

several uncertain parameters. Perhaps the most uncertain is the fraction

of HI-ionizing photons produced by young stars which escape into the

IGM. Most attempts to measure this "escape fraction" {f_esc} have

produced null results. Recently, a small subset of z~3 Lyman Break

Galaxies {LBGs} has been found exhibiting large escape fractions. It

remains unclear however, what differentiates them from other LBGs.

Several models attempt to explain how such a large fraction of ionizing

continuum can escape through the HI and dust in the ISM {eg. "chimneys"

created by SNe winds, globular cluster formation, etc.}, each producing

unique signatures which can be observed with resolved imaging of the

escaping Lyman continuum. We propose a deep, high resolution WFPC2 image

of the ionizing continuum {F336W} and the rest-frame 1500 Angstrom

continuum {F606W} of five of the six known LBGs with large escape

fractions. These LBGs all fit within a single WFPC2 pointing, yielding

high observing efficiency. Additionally, they all have z~3.1 or higher,

the optimal redshift range for probing the Lyman Continuum region with

available WFPC2 filters. These factors make our proposed sample

especially suitable for follow- up. With these data we will discern the

mechanisms responsible for producing large escape fractions, and

therefore gain insight into the process of reionization.

 

WFPC2 11178

 

Probing Solar System History with Orbits, Masses, and Colors of

Transneptunian Binaries

 

The recent discovery of numerous transneptunian binaries {TNBs} opens a

window into dynamical conditions in the protoplanetary disk where they

formed as well as the history of subsequent events which sculpted the

outer Solar System and emplaced them onto their present day heliocentric

orbits. To date, at least 47 TNBs have been discovered, but only about a

dozen have had their mutual orbits and separate colors determined,

frustrating their use to investigate numerous important scientific

questions. The current shortage of data especially cripples scientific

investigations requiring statistical comparisons among the ensemble

characteristics. We propose to obtain sufficient astrometry and

photometry of 23 TNBs to compute their mutual orbits and system masses

and to determine separate primary and secondary colors, roughly tripling

the sample for which this information is known, as well as extending it

to include systems of two near-equal size bodies. To make the most

efficient possible use of HST, we will use a Monte Carlo technique to

optimally schedule our observations.

 

WFPC2 11169

 

Collisions in the Kuiper belt

 

For most of the 15 year history of observations of Kuiper belt objects,

it has been speculated that impacts must have played a major role in

shaping the physical and chemical characteristics of these objects, yet

little direct evidence of the effects of such impacts has been seen. The

past 18 months, however, have seen an explosion of major new discoveries

giving some of the first insights into the influence of this critical

process. From a diversity of observations we have been led to the

hypotheses that: {1} satellite-forming impacts must have been common in

the Kuiper belt; {2} such impacts led to significant chemical

modification; and {3} the outcomes of these impacts are sufficiently

predictable that we can now find and study these impact-derived systems

by the chemical and physical attributes of both the satellites and the

primaries. If our picture is correct, we now have in hand for the first

time a set of incredibly powerful tools to study the frequency and

outcome of collisions in the outer solar system. Here we propose three

linked projects that would answer questions critical to the multiple

prongs of our hypothesis. In these projects we will study the chemical

effects of collisions through spectrophotometric observations of

collisionally formed satellites and through the search for additional

satellites around primaries with potential impact signatures, and we

will study the physical effects of impacts through the examination of

tidal evolution in proposed impact systems. The intensive HST program

that we propose here will allow us to fully test our new hypotheses and

will provide the ability to obtain the first extensive insights into

outer solar system impact processes.

 

NIC2 11143

 

NICMOS imaging of submillimeter galaxies with CO and PAH redshifts

 

We propose to obtain F110W and F160W imaging of 10 z~2.4 submillimeter

galaxies {SMGs} whose optical redshifts have been confirmed by the

detection of millimeter CO and/or mid- infrared PAH emission. With the

4000A break falling within/between the two imaging filters, we will be

able to study these sources' spatially resolved stellar populations

{modulo extinction} in the rest-frame optical. SMGs' large luminosities

appear to be due largely to merger-triggered starbursts; high-resolution

NICMOS imaging will help us understand the stellar masses, mass ratios,

and other properties of the merger progenitors, valuable information in

the effort to model the mass assembly history of the universe.

 

NIC3 11082

 

NICMOS Imaging of GOODS: Probing the Evolution of the Earliest Massive

Galaxies, Galaxies Beyond Reionization, and the High Redshift Obscured

Universe

 

Deep near-infrared imaging provides the only avenue towards

understanding a host of astrophysical problems, including: finding

galaxies and AGN at z > 7, the evolution of the most massive galaxies,

the triggering of star formation in dusty galaxies, and revealing

properties of obscured AGN. As such, we propose to observe 60 selected

areas of the GOODS North and South fields with NICMOS Camera 3 in the

F160W band pointed at known massive M > 10^11 M_0 galaxies at z > 2

discovered through deep Spitzer imaging. The depth we will reach {26.5

AB at 5 sigma} in H_160 allows us to study the internal properties of

these galaxies, including their sizes and morphologies, and to

understand how scaling relations such as the Kormendy relationship

evolved. Although NIC3 is out of focus and undersampled, it is currently

our best opportunity to study these galaxies, while also sampling enough

area to perform a general NIR survey 1/3 the size of an ACS GOODS field.

These data will be a significant resource, invaluable for many other

science goals, including discovering high redshift galaxies at z > 7,

the evolution of galaxies onto the Hubble sequence, as well as examining

obscured AGN and dusty star formation at z > 1.5. The GOODS fields are

the natural location for HST to perform a deep NICMOS imaging program,

as extensive data from space and ground based observatories such as

Chandra, GALEX, Spitzer, NOAO, Keck, Subaru, VLT, JCMT, and the VLA are

currently available for these regions. Deep high-resolution

near-infrared observations are the one missing ingredient to this

survey, filling in an important gap to create the deepest, largest, and

most uniform data set for studying the faint and distant universe. The

importance of these images will increase with time as new facilities

come on line, most notably WFC3 and ALMA, and for the planning of future

JWST observations.

 

WFPC2 11079

 

Treasury Imaging of Star Forming Regions in the Local Group:

Complementing the GALEX and NOAO Surveys

 

We propose to use WFPC2 to image the most interesting star-forming

regions in the Local Group galaxies, to resolve their young stellar

populations. We will use a set of filters including F170W, which is

critical to detect and characterize the most massive stars, to whose hot

temperatures colors at longer wavelengths are not sensitive. WFPC2's

field of view ideally matches the typical size of the star-forming

regions, and its spatial resolution allows us to measure individual

stars, given the proximity of these galaxies. The resulting H-R diagrams

will enable studies of star- formation properties in these regions,

which cover largely differing metallicities {a factor of 17, compared to

the factor of 4 explored so far} and characteristics. The results will

further our understanding of the star-formation process, of the

interplay between massive stars and environment, the properties of dust,

and will provide the key to interpret integrated measurements of

star-formation indicators {UV, IR, Halpha} available for several

hundreds more distant galaxies. Our recent deep surveys of these

galaxies with GALEX {FUV, NUV} and ground-based imaging {UBVRI, Halpha,

[OIII] and [SII]} provided the identification of the most relevant SF

sites. In addition to our scientific analysis, we will provide catalogs

of HST photometry in 6 bands, matched corollary ground-based data, and

UV, Halpha and IR integrated measurements of the associations, for

comparison of integrated star-formation indices to the resolved

populations. We envisage an EPO component.

 

FGS 11019

 

Monitoring FGS1r's Interferometric Response as a Function of Spectral

Color

 

This proposal uses FGS1r in Transfer mode to observe standard single

stars of a variety of spectral types to obtain point source

interferograms for the Transfer mode calibration library. In specific

cases, the calibration star will also be observed in POS mode multiple

times with the F583W and F5ND elements to provide the data to verify the

stabiligy of the cross filter calibration.

 

NIC2 10854

 

Coronagraphic Imaging of Bright New Spitzer Debris Disks II.

 

Fifteen percent of bright main sequence stars possess dusty

circumstellar debris disks revealed by far-infrared photometry. These

disks are signposts of planetary systems: collisions among larger,

unseen parent bodies maintain the observed dust population against

losses to radiation pressure and P-R drag. Images of debris disks at

optical, infrared, and millimeter wavelengths have shown central holes,

rings, radial gaps, warps, and azimuthal asymmetries which indicate the

presence of planetary mass perturbers. Such images provide unique

insights into the structure and dynamics of exoplanetary systems.

Relatively few debris disks have been spatially resolved. Only thirteen

have ever been resolved at any wavelength, and at wavelengths < 10

microns {where subarcsec resolution is available}, only ten. Imaging of

many other debris disk targets has been attempted with various HST

cameras/coronagraphs and adaptive optics, but without success. The key

property which renders a debris disk observable in scattered light is

its dust optical depth. The ten disks imaged so far all have a dust

excess luminosity >~ 0.01% that of the central star; no disks with

smaller optical depths have been detected. Most main sequence stars

known to meet this requirement have already been observed, so future

progress in debris disk imaging depends on discovering additional stars

with large infrared excess. The Spitzer Space Telescope offers the best

opportunity in 20 years to identify new examples of high optical depth

debris disk systems. We propose to complete ACS coronagraphic imaging

followup of bright, new debris disks discovered during the first two

years of the Spitzer mission, by observing three additional targets in

Cycle 15. Our goal is to obtain the first resolved images of these disks

at ~3 AU resolution, define the disk sizes and orientations, and uncover

disk substructures indicative of planetary perturbations. The results

will open wider a window into the structure of planetary systems.

 

NIC3 10839

 

The NICMOS Polarimetric Calibration

 

Recently, it has been shown that NICMOS possesses an instrumental

polarization at a level of 1.2%. This completely inhibits the data

reduction in a number of previous GO programs, and hampers the ability

of the instrument to perform high accuracy polarimetry. In all, 90

orbits of HST data are affected, with potentially many more in Cycle 15.

We propose to obtain high signal to noise observations of three

polarimetric standards at the cardinal roll angles of the NICMOS

polarizers for both NIC1 and NIC2. These observations are designed to

fully characterize the instrumental polarization in order for NICMOS to

reach its full potential by enabling high accuracy polarimetry of

sources with polarizations around 1%. The residual polarization will

also be determined as a function of position and spectral energy

distribution. Our group will rapidly turn around the required data

products and produce reports and software for the accurate

representation of the instrumental polarization. These items will be

presented to STScI and for dissemination among the wider astronomical

community.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                       SCHEDULED      SUCCESSFUL  

FGS GSacq               21                  21             

FGS REacq               19                  19              

OBAD with Maneuver 82                  82              

 

SIGNIFICANT EVENTS: (None)