Notice: Due to the conversion of some ACS WFC or HRC observations into

WFPC2, or NICMOS observations after the loss of ACS CCD science

capability in January, there may be an occasional discrepancy between a

proposal's listed (and correct) instrument usage and the abstract that

follows it.

 

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT # 4424

 

PERIOD COVERED: UT August 10,11,12, 2007 (DOY 222, 223, 224)

 

OBSERVATIONS SCHEDULED

 

NIC1/NIC2/NIC3 8794

 

NICMOS Post-SAA calibration - CR Persistence Part 5

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non- standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science

images. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

WFPC2 11312

 

The Local Cluster Substructure Survey {LoCuSS}: Deep Strong Lensing

Observations with WFPC2

 

LoCuSS is a systematic and detailed investigation of the mass,

substructure, and thermodynamics of 100 X-ray luminous galaxy clusters

at 0.15<z<0.3. The primary goal is to test our recent suggestion that

this population is dominated by dynamically immature disturbed clusters,

and that the observed mass-temperature relation suffers strong

structural segregation. If confirmed, this would represent a paradigm

shift in our observational understanding of clusters, that were hitherto

believed to be dominated by mature, undisturbed systems. We propose to

complete our successful Cycle 15 program {SNAP:10881} which prior to

premature termination had delivered robust weak-lensing detections in 17

clusters, and candidate strongly-lensed arcs in 11 of these 17. These

strong and weak lensing signals will give an accurate measure of the

total mass and structure of the dark matter distribution that we will

subsequently compare with X-ray and Sunyaev Zeldovich Effect

observables. The broader applications of our project include 1} the

calibration of mass-temperature and mass-SZE scaling relations which

will be critical for the calibration of proposed dark energy

experiments, and 2} the low redshift baseline study of the demographics

of massive clusters to aid interpretation of future high redshift {z>1}

cluster samples. To complete the all-important high resolution imaging

component of our survey, we request deep WFPC2 observations of 20

clusters through the F606W filter, for which wide-field weak-lensing

data are already available from our Subaru imaging program. The

combination of deep WFPC2 and Subaru data for these 20 clusters will

enable us to achieve the science program approved by the Cycle 15 TAC.

 

WFPC2 11307

 

Completing the ACS Nearby Galaxy Survey with WFPC2

 

We are requesting 25 orbits of Director's Discretionary Time to complete

the primary science goals of our highly-ranked ACS Nearby Galaxy Survey

Treasury program {ANGST}. Our program lost ~2/3 of its orbits due to the

ACS failure. Roughly half of these were restored as a result of an

appeal to the Telescope Time Review Board which re-scoped the program.

The Board's response to our appeal was explicit in terms of which

targets were to be observed and how. We were directed to request

Director's discretionary time for the components of the appeal which

were not granted by the Review Board, but which were vital to the

success of the program. The observing strategy for ANGST is two-fold: to

obtain one deep field per galaxy which enables derivation of an accurate

ancient star formation history, and to obtain radial tilings sufficient

for recovering the full star formation history. The Review Board granted

WFPC2 observations for deep fields in 7 galaxies, but no time for radial

tilings. However, recovering the full star formation history of a galaxy

is not possible without additional radial coverage. We have searched the

archives for observations which may be used in place of the tilings

{conceding some of the Treasury goals, but providing significant

constraints on the full star formation history}, and have identified

suitable observations for all but two of the galaxies. Here we request

DD time for radial tilings for those last two galaxies.

 

FGS 11298

 

Calibrating Cosmological Chronometers: White Dwarf Masses

 

We propose to use HST/FGS1R to determine White Dwarf {WD} masses. The

unmatched resolving power of HST/FGS1R will be utilized to follow up

four selected WD binary pairs. This high precision obtained with

HST/FGS1R simply cannot be equaled by any ground based technique. This

proposed effort complements that done by CoI Nelan in which a sample of

WDs is being observed with HST/FGS1R. This proposal will dramatically

increase the number of WDs for which dynamical mass measurements are

possible, enabling a better calibration of the WD mass-radius relation,

cooling curves, initial to final mass relations, and ultimately giving

important clues to the star formation history of our Galaxy and the age

of its disk as well as in other galaxies. {This project is part of

Subasavage's PhD thesis work at Georgia State University.}

 

WFPC2 11289

 

SL2S: The Strong Lensing Legacy Survey

 

Recent systematic surveys of strong galaxy-galaxy lenses {CLASS, SLACS,

GOODS, etc.} are producing spectacular results for galaxy masses roughly

below a transition mass M~10^13 Mo. The observed lens properties and

their evolution up to z~0.2, consistent with numerical simulations, can

be described by isothermal elliptical potentials. In contrast, modeling

of giant arcs in X-ray luminous clusters {halo masses M >~10^13 Mo}

favors NFW mass profiles, suggesting that dark matter halos are not

significantly affected by baryon cooling. Until recently, lensing

surveys were neither deep nor extended enough to probe the intermediate

mass density regime, which is fundamental for understanding the assembly

of structures. The CFHT Legacy Survey now covers 125 square degrees, and

thus offers a large reservoir of strong lenses probing a large range of

mass densities up to z~1. We have extracted a list of 150 strong lenses

using the most recent CFHTLS data release via automated procedures.

Following our first SNAPSHOT proposal in cycle 15, we propose to

continue the Hubble follow-up targeting a larger list of 130 lensing

candidates. These are intermediate mass range candidates {between

galaxies and clusters} that are selected in the redshift range of 0.2-1

with no a priori X-ray selection. The HST resolution is necessary for

confirming the lensing candidates, accurate modeling of the lenses, and

probing the total mass concentration in galaxy groups up to z~1 with the

largest unbiased sample available to date.

 

WFPC2 11229

 

SEEDS: The Search for Evolution of Emission from Dust in Supernovae with

HST and

 

The role that massive stars play in the dust content of the Universe is

extremely uncertain. It has long been hypothesized that dust can

condense within the ejecta of supernovae {SNe}, however there is a

frustrating discrepancy between the amounts of dust found in the early

Universe, or predicted by nucleation theory, and inferred from SN

observations. Our SEEDS collaboration has been carefully revisiting the

observational case for dust formation by core-collapse SNe, in order to

quantify their role as dust contributors in the early Universe. As dust

condenses in expanding SN ejecta, it will increase in optical depth,

producing three simultaneously observable phenomena: {1} increasing

optical extinction; {2} infrared {IR} excesses; and {3} asymmetric

blue-shifted emission lines. Our SEEDS collaboration recently reported

all three phenomena occurring in SN2003gd, demonstrating the success of

our observing strategy, and permitting us to derive a dust mass of up to

0.02 solar masses created in the SN. To advance our understanding of the

origin and evolution of the interstellar dust in galaxies, we propose to

use HST's WFPC2 and NICMOS instruments plus Spitzer's photometric

instruments to monitor ten recent core- collapse SNe for dust formation

and, as a bonus, detect light echoes that can affect the dust mass

estimates. These space-borne observations will be supplemented by

ground- based spectroscopic monitoring of their optical emission line

profiles. These observations would continue our 2-year HST and Spitzer

monitoring of this phenomena in order to address two key questions: Do

all SNe produce dust? and How much dust do they produce? As all the SN

are witin 15 Mpc, each SN stands an excellent chance of detection with

HST and Spitzer and of resolving potential light echoes.

 

FGS 11211

 

An Astrometric Calibration of Population II Distance Indicators

 

In 2002 HST produced a highly precise parallax for RR Lyrae. That

measurement resulted in an absolute magnitude, M{V}= 0.61+/-0.11, a

useful result, judged by the over ten refereed citations each year

since. It is, however, unsatisfactory to have the direct,

parallax-based, distance scale of Population II variables based on a

single star. We propose, therefore, to obtain the parallaxes of four

additional RR Lyrae stars and two Population II Cepheids, or W Vir

stars. The Population II Cepheids lie with the RR Lyrae stars on a

common K-band Period-Luminosity relation. Using these parallaxes to

inform that relationship, we anticipate a zero-point error of 0.04

magnitude. This result should greatly strengthen confidence in the

Population II distance scale and increase our understanding of RR Lyrae

star and Pop II Cepheid astrophysics.

 

FGS 11210

 

The Architecture of Exoplanetary Systems

 

Are all planetary systems coplanar? Concordance cosmogony makes that

prediction. It is, however, a prediction of extrasolar planetary system

architecture as yet untested by direct observation for main sequence

stars other than the Sun. To provide such a test, we propose to carry

out FGS astrometric studies on four stars hosting seven companions. Our

understanding of the planet formation process will grow as we match not

only system architecture, but formed planet mass and true distance from

the primary with host star characteristics for a wide variety of host

stars and exoplanet masses. We propose that a series of FGS astrometric

observations with demonstrated 1 millisecond of arc per- observation

precision can establish the degree of coplanarity and component true

masses for four extrasolar systems: HD 202206 {brown dwarf+planet}; HD

128311 {planet+planet}, HD 160691 = mu Arae {planet+planet}, and HD

222404AB = gamma Cephei {planet+star}. In each case the companion is

identified as such by assuming that the minimum mass is the actual mass.

For the last target, a known stellar binary system, the companion orbit

is stable only if coplanar with the AB binary orbit.

 

WFPC2 11202

 

The Structure of Early-type Galaxies: 0.1-100 Effective Radii

 

The structure, formation and evolution of early-type galaxies is still

largely an open problem in cosmology: how does the Universe evolve from

large linear scales dominated by dark matter to the highly non-linear

scales of galaxies, where baryons and dark matter both play important,

interacting, roles? To understand the complex physical processes

involved in their formation scenario, and why they have the tight

scaling relations that we observe today {e.g. the Fundamental Plane}, it

is critically important not only to understand their stellar structure,

but also their dark-matter distribution from the smallest to the largest

scales. Over the last three years the SLACS collaboration has developed

a toolbox to tackle these issues in a unique and encompassing way by

combining new non-parametric strong lensing techniques, stellar

dynamics, and most recently weak gravitational lensing, with

high-quality Hubble Space Telescope imaging and VLT/Keck spectroscopic

data of early-type lens systems. This allows us to break degeneracies

that are inherent to each of these techniques separately and probe the

mass structure of early-type galaxies from 0.1 to 100 effective radii.

The large dynamic range to which lensing is sensitive allows us both to

probe the clumpy substructure of these galaxies, as well as their

low-density outer haloes. These methods have convincingly been

demonstrated, by our team, using smaller pilot- samples of SLACS lens

systems with HST data. In this proposal, we request observing time with

WFPC2 and NICMOS to observe 53 strong lens systems from SLACS, to obtain

complete multi-color imaging for each system. This would bring the total

number of SLACS lens systems to 87 with completed HST imaging and

effectively doubles the known number of galaxy-scale strong lenses. The

deep HST images enable us to fully exploit our new techniques, beat down

low-number statistics, and probe the structure and evolution of

early-type galaxies, not only with a uniform data-set an order of

magnitude larger than what is available now, but also with a fully

coherent and self-consistent methodological approach!

 

WFPC2 11178

 

Probing Solar System History with Orbits, Masses, and Colors of

Transneptunian Binaries

 

The recent discovery of numerous transneptunian binaries {TNBs} opens a

window into dynamical conditions in the protoplanetary disk where they

formed as well as the history of subsequent events which sculpted the

outer Solar System and emplaced them onto their present day heliocentric

orbits. To date, at least 47 TNBs have been discovered, but only about a

dozen have had their mutual orbits and separate colors determined,

frustrating their use to investigate numerous important scientific

questions. The current shortage of data especially cripples scientific

investigations requiring statistical comparisons among the ensemble

characteristics. We propose to obtain sufficient astrometry and

photometry of 23 TNBs to compute their mutual orbits and system masses

and to determine separate primary and secondary colors, roughly tripling

the sample for which this information is known, as well as extending it

to include systems of two near-equal size bodies. To make the most

efficient possible use of HST, we will use a Monte Carlo technique to

optimally schedule our observations.

 

NIC2 11157

 

NICMOS Imaging Survey of Dusty Debris Around Nearby Stars Across the

Stellar Mass Spectrum

 

Association of planetary systems with dusty debris disks is now quite

secure, and advances in our understanding of planet formation and

evolution can be achieved by the identification and characterization of

an ensemble of debris disks orbiting a range of central stars with

different masses and ages. Imaging debris disks in starlight scattered

by dust grains remains technically challenging so that only about a

dozen systems have thus far been imaged. A further advance in this field

needs an increased number of imaged debris disks. However, the technical

challenge of such observations, even with the superb combination of HST

and NICMOS, requires the best targets. Recent HST imaging investigations

of debris disks were sample-limited not limited by the technology used.

We performed a search for debris disks from a IRAS/Hipparcos cross

correlation which involved an exhaustive background contamination check

to weed out false excess stars. Out of ~140 identified debris disks, we

selected 22 best targets in terms of dust optical depth and disk angular

size. Our target sample represents the best currently available target

set in terms of both disk brightness and resolvability. For example, our

targets have higher dust optical depth, in general, than newly

identified Spitzer disks. Also, our targets cover a wider range of

central star ages and masses than previous debris disk surveys. This

will help us to investigate planetary system formation and evolution

across the stellar mass spectrum. The technical feasibility of this

program in two-gyro mode guiding has been proven with on- orbit

calibration and science observations during HST cycles 13, 14, and 15.

 

WFPC2 11156

 

Monitoring Active Atmospheres on Uranus and Neptune

 

We propose Snapshot observations of Uranus and Neptune to monitor

changes in their atmospheres on time scales of weeks and months. Uranus

equinox is only months away, in December 2007. Hubble Space Telescope

observations during the past several years {Hammel et al. 2005, Icarus

175, 284 and references therein} have revealed strongly

wavelength-dependent latitudinal structure, the presence of numerous

visible-wavelength cloud features in the northern hemisphere, at least

one very long-lived discrete cloud in the southern hemisphere, and in

2006 the first dark spot ever seen on Uranus. Long-term ground-based

observations {Lockwood and Jerzekiewicz, 2006, Icarus 180, 442; Hammel

and Lockwood 2007, Icarus 186, 291} reveal seasonal brightness changes

whose origins are not well understood. Recent near-IR images of Neptune

obtained using adaptive optics on the Keck Telescope, together with HST

observations {Sromovsky et al. 2003, Icarus 163, 256 and references

therein} which include previous Snapshot programs {GO 8634, 10170,

10534} show a general increase in activity at south temperate latitudes

until 2004, when Neptune returned to a rather Voyager-like appearance.

Further Snapshot observations of these two dynamic planets will

elucidate the nature of long-term changes in their zonal atmospheric

bands and clarify the processes of formation, evolution, and dissipation

of discrete albedo features.

 

WFPC2 11100

 

Two new `bullets' for MOND: revealing the properties of dark matter in

massive merging clusters

 

The principal objective of this proposal is to study the physical nature

of dark matter by using two, massive, newly-identified merging clusters

of galaxies. As shown by the pioneering example of the ``bullet

cluster'' {1E0657-56}, such systems are ideal laboratories for detecting

dark matter and distinguishing between cold dark matter {CDM} and other

scenarios {e.g. self-interacting dark matter}. Our limit on the

self-interaction cross-section of dark matter relies on the assumption

of a normal pre-merger mass-to-light ratios, and a small impact

parameter during the collision of the two clusters. In order to mitigate

any possible systematic effects, it is vital to extend this work to

other, similar systems. With detailed observations of new systems, the

systematic uncertainties in the dark matter cross section calculations

can be improved substantially, allowing us to move from rough order of

magnitude estimates to measurements with quantifiable uncertainties that

can be compared usefully with the predictions from numerical

simulations. Our targets are two extraordinary, high-redshift, merging

galaxy clusters recently discovered by the Massive Cluster Survey

{MACS}. This survey is by far the best matched to this study, since it

selects medium redshift {optimal for gravitational lensing studies} and

X-ray luminous {hence massive} objects. We have selected the best

candidates with clear evidence for considerable offsets between the hot

X-ray emitting gas and optically luminous stellar material. The two most

striking examples are the targets of this proposal. To pin down the

position of the dark matter component we require high resolution,

absolutely calibrated mass maps. The combination of weak and strong

lensing measurements is needed to attain this goal. This can only be

achieved with the excellent resolving power of the HST {in combination

with wide-field, multicolor Subaru data already in hand}. We therefore

request multicolor HST/WFPC2 observations of the two merging clusters.

The combination of constraints from multiply lensed images {identified

via morphology and color information} and high-resolution weak lensing

data will allow us to construct, self-consistently, their mass

distribution from the very centers to the outskirts. Gravitational

lensing thus provides a unique tool transforming these clusters into

dark matter laboratories. They will supply us with answers as to the

nature and properties of dark matter, and how it shapes galaxies and

galaxy clusters and their evolution through cosmic time.

 

NIC1 11057

 

Cycle 15 NICMOS dark current, shading profile, and read noise monitoring

program

 

The purpose of this proposal is to monitor the dark current, read noise,

and shading profile for all three NICMOS detectors throughout the

duration of Cycle 15. This proposal is a slightly modified version of

proposal 10380 of cycle 13 and 9993 of cycle12 and is the same as Cycle

14. that we cut down some exposure time to make the observation fit

within 24 orbits.

 

WFPC2 11030

 

WFPC2 WF4 Temperature Reduction #3

 

In the fall of 2005, a serious anomaly was found in images from the WF4

CCD in WFPC2. The WF4 CCD bias level appeared to have become unstable,

resulting in sporadic images with either low or zero bias level. The

severity and frequency of the problem was rapidly increasing, making it

possible that WF4 would soon become unusable if no work-around were

found. Examination of bias levels during periods with frequent WFPC2

images showed low and zero bias episodes every 4 to 6 hours. This

periodicity is driven by cycling of the WFPC2 Replacement Heater, with

the bias anomalies occurring at the temperature peaks. The other three

CCDs {PC1, WF2, and WF3} appear to be unaffected and continue to operate

properly. Lowering the Replacement Heater temperature set points by a

few degrees C effectively eliminates the WF4 anomaly. On 9 January 2006,

the upper set point of the WFPC2 Replacement Heater was reduced from

14.9C to 12.2C. On 20 February 2006, the upper set point was reduced

from 12.2C to 11.3C, and the lower set point was reduced from 10.9C to

10.0C. These changes restored the WF4 CCD bias level; however, the bias

level has begun to trend downwards again, mimicking its behavior in late

2004 and early 2005. A third temperature reduction is planned for March

2007. We will reduce the upper set point of the heater from 11.3C to

10.4C and the lower set point from 10.0C to 9.1C. The observations

described in this proposal will test the performance of WFPC2 before and

after this temperature reduction. Additional temperature reductions may

be needed in the future, depending on the performance of WF4. Orbits:

internal 26, external 1

 

NIC1 10889

 

The Nature of the Halos and Thick Disks of Spiral Galaxies

 

We propose to resolve the extra-planar stellar populations of the thick

disks and halos of seven nearby, massive, edge-on galaxies using ACS,

NICMOS, and WFPC2 in parallel. These observations will provide accurate

star counts and color-magnitude diagrams 1.5 magnitudes below the tip of

the Red Giant Branch sampled along the two principal axes and one

intermediate axis of each galaxy. We will measure the metallicity

distribution functions and stellar density profiles from star counts

down to very low average surface brightness’s, equivalent to ~32 V-mag

per square arcsec. These observations will provide the definitive HST

study of extra-planar stellar populations of spiral galaxies. Our

targets cover a range in galaxy mass, luminosity, and morphology and as

function of these galaxy properties we will provide: - The first

systematic study of the radial and isophotal shapes of the diffuse

stellar halos of spiral galaxies - The most detailed comparative study

to date of thick disk morphologies and stellar populations - A

comprehensive analysis of halo and thick disk metallicity distributions

as a function of galaxy type and position within the galaxy. - A

sensitive search for tidal streams - The first opportunity to directly

relate globular cluster systems to their field stellar population We

will use these fossil records of the galaxy assembly process preserved

in the old stellar populations to test halo and thick disk formation

models within the hierarchical galaxy formation scheme. We will test

LambdaCDM predictions on sub-galactic scales, where it is difficult to

test using CMB and galaxy redshift surveys, and where it faces its most

serious difficulties.

 

WFPC2 10884

 

The Dynamical Structure of Ellipticals in the Coma and Abell 262

Clusters

 

We propose to obtain images of 13 relatively luminous early type

galaxies in the Coma cluster and Abell 262 for which we have already

collected ground based major and minor axis spectra and images. The

higher resolution HST images will enable us to study the central regions

of these galaxies which is crucial to our dynamical modeling. The

complete data set will allow us to perform a full dynamical analysis and

to derive the dark matter content and distribution, the stellar orbital

structure, and the stellar population properties of these objects,

probing the predictions of galaxy formation models. The dynamical

analysis will be performed using an up-to-date axi-symmetric orbit

superposition code.

 

NIC2 10852

 

Coronagraphic Polarimetry with NICMOS: Dust grain evolution in T Tauri

stars

 

The formation of planetary systems is intimately linked to the dust

population in circumstellar disks, thus understanding dust grain

evolution is essential to advancing our understanding of how planets

form. By combining {1} the coronagraphic polarimetry capabilities of

NICMOS, {2} powerful 3-D radiative transfer codes, and {3} observations

of objects known to span the Class II-III stellar evolutionary phases,

we will gain crucial insight into dust grain growth. By observing

objects representative of a known evolutionary sequence of YSOs, we will

be able to investigate how the dust population evolves in size and

distribution during the crucial transition from a star+disk system to a

system containing planetesimals. When combine with our previous study on

dust grain evolution in the Class I-II phase, the proposed study will

help to establish the fundamental time scales for the depletion of

ISM-like grains: the first step in understanding the transformation from

small submicron sized dust grains, to large millimeter sized grains, and

untimely to planetary bodies.

 

WFPC2 10841

 

A Proper Motion Search for Intermediate Mass Black Holes in Globular

Clusters {2nd Epoch Observations}

 

Establishing the presence or absence of intermediate-mass black holes

{IMBH} in globular clusters is crucial for understanding the evolution

of dense stellar systems. Observationally, this search has been hampered

by the low number of stars with known velocities in the central few

arcseconds. This limits our knowledge of the velocity dispersion in the

region where the gravitational influence of any IMBH would be felt. In

Cycle 13, we successfully obtained ACS/HRC images of the centers of five

carefully chosen Galactic globular clusters {GO-10401} for a new proper

motion study. Although the science case was approved and the first epoch

images obtained, the requested future cycle observations were not

granted {due to a general policy decision based on the strong

uncertainties at the time concerning the immediate future of HST}. We

have now assessed the quality of the first epoch observations. The HRC

resolution reveals many isolated stars in to the very center of each

cluster that remained blended or unresolved in previous WFPC2 data.

Given a two year baseline, we are confident that we can achieve the

proper motion precision required to place strict limits on the presence

of an IMBH. Therefore, we request the second-epoch, follow-up

observations to GO-10401 in order to measure the proper motions of stars

in our target clusters. These velocity measurements will allow us to:

{i} place constraints on the mass of a central black hole in each

cluster; {ii} derive the internal velocity dispersion as a function of

cluster radius; {iii} verify or reject previous reports of cluster

rotation; and {iv} directly measure velocity anisotropy as a function of

radius. If no second epoch data are obtained then the observing time

already invested in the first epoch will have been wasted.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS:

#10939 REACQ(1,3,3) failed.

Upon acquisition of signal at 223/15:29:24 HST was in gyro control with

QF1STOPF and QSTOP flags set. REACQ(1,3,3) at 223/15:08:46 failed to RGA

control. At acquisition of signal vehicle had OBAD RSS error of 2.46

arcseconds. Initial GSCAQ(1,3,3) at 13:32:51 and subsequent REACQ(1,3,3)

at 16:44:42 were successful.

 

#10940 REacq(1,2,1) failed to RGA control.

REacq(1,2,1) scheduled at 224/02:39:00 failed at 02:42:09 due to scan

step limit exceeded on FGS 1. OBAD1 showed errors of V1=7.41, V2=423.15,

V3=17.34, RSS=423.57. OBAD2 showed errors of V1=-35.71, V2=-21.75,

V3=-36.81, RSS=55.70.

 

COMPLETED OPS REQUEST: (None)

 

                              SCHEDULED SUCCESSFUL

FGS GSacq                      16              16

FGS REacq                      26              24

OBAD with Maneuver        84              84

 

COMPLETED OPS NOTES: (None)

 

SIGNIFICANT EVENTS: (None