Notice: Due to the conversion of some ACS WFC or HRC observations into

WFPC2, or NICMOS observations after the loss of ACS CCD science

capability in January, there may be an occasional discrepancy between a

proposal's listed (and correct) instrument usage and the abstract that

follows it.

 

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT    # 4426

 

PERIOD COVERED: UT August 14, 2007 (DOY 226)

 

OBSERVATIONS SCHEDULED

 

ACS/SBC 10840

 

The FUV fluxes of Tauri stars in the Taurus molecular cloud

 

Present and forthcoming ground-based and space surveys of the T Tauri

stars in the Taurus molecular cloud will provide information from high

energy stellar and accretion radiation to low energy solid state and

molecular emission from the disk, making those stars perfect

laboratories to carry out self-consistent studies of disk physics and

evolution. We propose to complete this wealth of information by

obtaining ACS/FUV spectra for a significant sample of Taurus T Tauri

stars, covering a range of accretion properties and dust evolutionary

stages. FUV fluxes carry ~ 10 - 100 more energy than X-rays into these

disks and are thus crucial gas heating agents and key to disk dispersal

by photoevaporation. These observations are a pre-requisite to interpret

observations with Spitzer, SOFIA, Herschel, and ALMA, and will become

one of the important legacies of HST to the star formation community.

 

ACS/SBC 10864

 

Mapping the Gaseous Content of Protoplanetary and Young Planetary

Systems with ACS

 

One of the key problems in planetary system formation is understanding

how rapidly, and over what time interval Jovian planets can form. Dust

in the protoplanetary disk is critical in planetesimal formation, but it

is the gas which produces giant planets, and which is essential for

their migration. However, compared to data on the circumstellar dust,

information on the gas component is sparse, especially in the

planet-formation zone. This severely limits our ability to put

observational constraints on giant planet formation, except to note that

the process must be largely complete by 12 Myr, given the paucity of

Herbig Ae or classical T Tauri stars older than 10-12 Myr. In the FUV,

photo-excited molecular hydrogen transitions have the requisite contrast

to the stellar photosphere, accretion shock, and reflection nebulosity,

and can be traced 50-100 AU from the exciting stars in both envelopes

and outflow cavities and protoplanetary disks. Central disk cavities, an

expected consequence of planet formation, larger than 0.1" are directly

detectable in HST FUV spectra, while smaller cavities may be detected by

comparison with protoplanetary disks which are still accreting onto

their stars. We propose augmenting existing HST coronagraphic imagery of

6 Herbig Fe and T Tauri disks with ACS Solar-Blind Channel Lyman alpha

imagery and slitless spectroscopy simultaneously sampling the disk in

molecular hydrogen and small-grain reflection nebulosity. These data

will be used to quantify the amount of vertical stratification in these

disks, to map the mass-loss geometry from the star, and to determine

whether removal of molecular material preceds, lags, or is contemporary

with clearing of the dust.

 

NIC1/NIC2/NIC3 8794

 

NICMOS Post-SAA calibration - CR Persistence Part 5

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non- standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science

images. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC2 11219

 

Active Galactic Nuclei in nearby galaxies: a new view of the origin of

the radio-loud radio- quiet dichotomy?

 

Using archival HST and Chandra observations of 34 nearby early-type

galaxies {drawn from a complete radio selected sample} we have found

evidence that the radio-loud/radio-quiet dichotomy is directly connected

to the structure of the inner regions of their host galaxies in the

following sense: [1] Radio-loud AGN are associated with galaxies with

shallow cores in their light profiles [2] Radio-quiet AGN are only

hosted by galaxies with steep cusps. Since the brightness profile is

determined by the galaxy's evolution, through its merger history, our

results suggest that the same process sets the AGN flavour. This

provides us with a novel tool to explore the co-evolution of galaxies

and supermassive black holes, and it opens a new path to understand the

origin of the radio-loud/radio-quiet AGN dichotomy. Currently our

analysis is statistically incomplete as the brightness profile is not

available for 82 of the 116 targets. Most galaxies were not observed

with HST, while in some cases the study is obstructed by the presence of

dust features. We here propose to perform an infrared NICMOS snapshot

survey of these 82 galaxies. This will enable us to i} test the reality

of the dichotomic behaviour in a substantially larger sample; ii} extend

the comparison between radio-loud and radio-quiet AGN to a larger range

of luminosities.

 

WFPC2 11128

 

Time Scales Of Bulge Formation In Nearby Galaxies

 

Traditionally, bulges are thought to fit well into galaxy formation

models of hierarchical merging. However, it is now becoming well

established that many bulges formed through internal, secular evolution

of the disk rather than through mergers. We call these objects

pseudobulges. Much is still unknown about pseudobulges, the most

pressing questions being: How, exactly, do they build up their mass? How

long does it take? And, how many exist? We are after an answer to these

questions. If pseudobulges form and evolve over longer periods than the

time between mergers, then a significant population of pseudobulges is

hard to explain within current galaxy formation theories. A pseudobulge

indicates that a galaxy has most likely not undergone a major merger

since the formation of the disk. The ages of pseudobulges give us an

estimate for the time scale of this quiescent evolution. We propose to

use 24 orbits of HST time to complete UBVIH imaging on a sample of 33

nearby galaxies that we have observed with Spitzer in the mid-IR. These

data will be used to measure spatially resolved stellar population

parameters {mean stellar age, metallicity, and star formation history};

comparing ages to star formation rates allows us to accurately constrain

the time scale of pseudobulge formation. Our sample of bulges includes

both pseudo- and classical bulges, and evenly samples barred and

unbarred galaxies. Most of our sample is imaged, 13 have complete UBVIH

coverage; we merely ask to complete missing observations so that we may

construct a uniform sample for studying bulge formation. We also wish to

compare the stellar population parameters to a variety of bulge and

global galaxy properties including star formation rates, dynamics,

internal bulge morphology, structure from bulge-disk decompositions, and

gas content. Much of this data set is already or is being assembled.

This will allow us to derive methods of pseudobulge identification that

can be used to accurately count pseudobulges in large surveys. Aside

from our own science goals, we will present this broad set of data to

the community. Thus, we waive proprietary periods for all observations.

 

 

WFPC2 11229

 

SEEDS: The Search for Evolution of Emission from Dust in Supernovae with

HST and Spitzer

 

The role that massive stars play in the dust content of the Universe is

extremely uncertain. It has long been hypothesized that dust can

condense within the ejecta of supernovae {SNe}, however there is a

frustrating discrepancy between the amounts of dust found in the early

Universe, or predicted by nucleation theory, and inferred from SN

observations. Our SEEDS collaboration has been carefully revisiting the

observational case for dust formation by core-collapse SNe, in order to

quantify their role as dust contributors in the early Universe. As dust

condenses in expanding SN ejecta, it will increase in optical depth,

producing three simultaneously observable phenomena: {1} increasing

optical extinction; {2} infrared {IR} excesses; and {3} asymmetric

blue-shifted emission lines. Our SEEDS collaboration recently reported

all three phenomena occurring in SN2003gd, demonstrating the success of

our observing strategy, and permitting us to derive a dust mass of up to

0.02 solar masses created in the SN. To advance our understanding of the

origin and evolution of the interstellar dust in galaxies, we propose to

use HST's WFPC2 and NICMOS instruments plus Spitzer's photometric

instruments to monitor ten recent core- collapse SNe for dust formation

and, as a bonus, detect light echoes that can affect the dust mass

estimates. These space-borne observations will be supplemented by

ground- based spectroscopic monitoring of their optical emission line

profiles. These observations would continue our 2-year HST and Spitzer

monitoring of this phenomena in order to address two key questions: Do

all SNe produce dust? and How much dust do they produce? As all the SN

are witin 15 Mpc, each SN stands an excellent chance of detection with

HST and Spitzer and of resolving potential light echoes.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS:

10948 - REACQ(2,3,3) failed, scan step limit exceeded on FGS 2

           REACQ(2,3,3) at 226/20:08:58 failed due to scan step limit exceeded on

           FGS 2.

 

10949 - ACS 779 Fold Mechanism Move was Blocked

           A series of ACS 779 Status Buffer Messages "Fold Mechanism Move Was

           Blocked" were received beginning at 20:17:06. This was the result of a

           failed REACQ(2,3,3) at 20:08:58 (HSTAR 10948) which caused the Take Data

           Flag to be down when the fold mechanism move to the SBC position was

           commanded.

 

 

COMPLETED OPS REQUEST:

18121-1 -  Patch WF2 UIDLE replacement htr set point, adjustment #4

 

 

COMPLETED OPS NOTES: None

 

                       SCHEDULED      SUCCESSFUL   

FGS GSacq               08                  08                        

FGS REacq               06                  05        

OBAD with Maneuver 28                  28              

 

 

SIGNIFICANT EVENTS:

 

The 4th in-flight adjustment of the WF/PC-II replacement heater

temperature control was successfully completed with the execution of Ops

Request 18121-1 at 226/14:07. All activities proceeded nominally.

 

The UIDLE dead band control range was shifted from 8.7 - 9.99 to 7.83 -

9.05 degC. The behavior of the replacement heaters under the control of

UIDLE and the optical bench temperatures will continue to be monitored

in real-time until such time as the new settings are functionally

verified. Another Flash Report will be sent following this verification.

 

At 226/22:48:08 the replacement heaters were observed turning on when

Bay1 fell to 7.83 degs, ~ 7 minutes later they were disables when Bay1

reached 9.05 deg as expected, functionally verifying the patches.

 

 

-Lynn
____________________________________________________________
Lynn F. Bassford
Hubble Space Telescope
CHAMP Mission Operations Manager

CHAMP Flight Operations Team Manager
Lockheed Martin Mission Services (LMMS)

NASA GSFC PH#: 301-286-2876


"The Hubble Space Telescope is the astronomical observatory and key to unlocking the most cosmic mysteries of the past, present and future."    - 7/26/6