Notice:
Due to the conversion of some ACS WFC or HRC observations into
WFPC2,
or NICMOS observations after the loss of ACS CCD science
capability
in January, there may be an occasional discrepancy between a
proposal's
listed (and correct) instrument usage and the abstract that
follows
it.
HUBBLE
SPACE TELESCOPE - Continuing to collect World Class Science
DAILY
REPORT # 4451
PERIOD
COVERED: UT September 19, 2007 (DOY 262)
OBSERVATIONS
SCHEDULED
NIC1/NIC2/NIC3
8794
NICMOS Post-SAA calibration - CR Persistence Part 5
A
new procedure proposed to alleviate the CR-persistence problem of
NICMOS.
Dark frames will be obtained immediately upon exiting the SAA
contour
23, and every time a NICMOS exposure is scheduled within 50
minutes
of coming out of the SAA. The darks will be obtained in parallel
in
all three NICMOS Cameras. The POST-SAA darks will be non- standard
reference
files available to users with a USEAFTER date/time mark. The
keyword
'USEAFTER=date/time' will also be added to the header of each
POST-SAA
DARK frame. The keyword must be populated with the time, in
addition
to the date, because HST crosses the SAA ~8 times per day so
each
POST-SAA DARK will need to have the appropriate time specified, for
users
to identify the ones they need. Both the raw and processed images
will
be archived as POST-SAA DARKs. Generally we expect that all NICMOS
science/calibration
observations started within 50 minutes of leaving an
SAA
will need such maps to remove the CR persistence from the science
images.
Each observation will need its own CRMAP, as different SAA
passages
leave different imprints on the NICMOS detectors.
WFPC2
10915
ACS
Nearby Galaxy Survey
Existing
HST observations of nearby galaxies comprise a sparse and
highly
non-uniform archive, making comprehensive comparative studies
among
galaxies essentially impossible. We propose to secure HST's
lasting
impact on the study of nearby galaxies by undertaking a
systematic,
complete, and carefully crafted imaging survey of ALL
galaxies
in the Local Universe outside the Local Group. The resulting
images
will allow unprecedented measurements of: {1} the star formation
history
{SFH} of a >100 Mpc^3 volume of the Universe with a time
resolution
of Delta[log{t}]=0.25; {2} correlations between spatially
resolved
SFHs and environment; {3} the structure and properties of thick
disks
and stellar halos; and {4} the color distributions, sizes, and
specific
frequencies of globular and disk clusters as a function of
galaxy
mass and environment. To reach these goals, we will use a
combination
of wide-field tiling and pointed deep imaging to obtain
uniform
data on all 72 galaxies within a volume-limited sample extending
to
~3.5 Mpc, with an extension to the M81 group. For each galaxy, the
wide-field
imaging will cover out to ~1.5 times the optical radius and
will
reach photometric depths of at least 2 magnitudes below the tip of
the
red giant branch throughout the limits of the survey volume. One
additional
deep pointing per galaxy will reach SNR~10 for red clump
stars,
sufficient to recover the ancient SFH from the color-magnitude
diagram.
This proposal will produce photometric information for ~100
million
stars {comparable to the number in the SDSS survey} and uniform
multi-
color images of half a square degree of sky. The resulting
archive
will establish the fundamental optical database for nearby
galaxies,
in preparation for the shift of high- resolution imaging to
the
near-infrared.
WFPC2
11029
WFPC2
CYCLE 15 Intflat Linearity Check and Filter Rotation Anomaly
Monitor
Intflat
observations will be taken to provide a linearity check: the
linearity
test consists of a series of intflats in F555W, in each gain
and
each shutter. A combination of intflats, visflats, and earthflats
will
be used to check the repeatability of filter wheel motions.
{Intflat
sequences tied to decons, visits 1-18 in prop 10363, have been
moved
to the cycle 15 decon proposal xxxx for easier scheduling.} Note:
long-exposure
WFPC2 intflats must be scheduled during ACS anneals to
prevent
stray light from the WFPC2 lamps from contaminating long ACS
external
exposures.
WFPC2
11079
Treasury
Imaging of Star Forming Regions in the Local Group:
Complementing
the GALEX and NOAO Surveys
We
propose to use WFPC2 to image the most interesting star-forming
regions
in the Local Group galaxies, to resolve their young stellar
populations.
We will use a set of filters including F170W, which is
critical
to detect and characterize the most massive stars, to whose hot
temperatures
colors at longer wavelengths are not sensitive. WFPC2's
field
of view ideally matches the typical size of the star-forming
regions,
and its spatial resolution allows us to measure individual
stars,
given the proximity of these galaxies. The resulting H-R diagrams
will
enable studies of star-formation properties in these regions, which
cover
largely differing metallicities {a factor of 17, compared to the
factor
of 4 explored so far} and characteristics. The results will
further
our understanding of the star-formation process, of the
interplay
between massive stars and environment, the properties of dust,
and
will provide the key to interpret integrated measurements of
star-formation
indicators {UV, IR, Halpha} available for several
hundreds
more distant galaxies. Our recent deep surveys of these
galaxies
with GALEX {FUV, NUV} and ground-based imaging {UBVRI, Halpha,
[OIII]
and [SII]} provided the identification of the most relevant SF
sites.
In addition to our scientific analysis, we will provide catalogs
of
HST photometry in 6 bands, matched corollary ground-based data, and
UV,
Halpha and IR integrated measurements of the associations, for
comparison
of integrated star-formation indices to the resolved
populations.
We envisage an EPO component.
FLIGHT
OPERATIONS SUMMARY:
Significant
Spacecraft Anomalies: (The following are preliminary reports
of
potential non-nominal performance that will be investigated.)
HSTARS:
(None)
COMPLETED
OPS REQUEST: (None)
COMPLETED
OPS NOTES: (None)
SCHEDULED
SUCCESSFUL
FGS
GSacq
07
07
FGS
REacq
07
07
OBAD
with Maneuver
28
28
SIGNIFICANT
EVENTS: (None)