Notice: Due to the conversion of some ACS WFC or HRC observations into

WFPC2, or NICMOS observations after the loss of ACS CCD science

capability in January, there may be an occasional discrepancy between a

proposal's listed (and correct) instrument usage and the abstract that

follows it.

 

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT    # 4459

 

PERIOD COVERED: UT October 01, 2007 (DOY 274)

 

OBSERVATIONS SCHEDULED

 

WFPC2 10909

 

Exploring the diversity of cosmic explosions: The supernovae of

gamma-ray bursts

 

While the connection between gamma-ray bursts {GRBs} and supernovae

{SNe} is now clearly established, there is a large variety of

observational properties among these SNe and the physical parameters of

these explosions are poorly known. As part of a comprehensive program,

we propose to use HST in order to obtain basic information about the

supernovae associated with gamma-ray bursts. HST offers the means to

cleanly separate the light curves of the GRB afterglow from the

supernova, and to remove the contamination from the host galaxy, opening

a clear route to the fundamental parameters of the SN. From these

observations, we will determine the absolute magnitude at maximum, the

shape of the spectral energy distribution, and any change over time of

the energy distribution. We will also measure the rate of decay of the

exponential tail. Merged with the ground-based data that we will obtain

for each event, we will be able to compare our data set to models and

constrain the energy of the explosion, the mass of the ejecta and the

mass of Nickel synthesized during the explosion. These results will shed

light on the apparent variety of supernovae associated with gamma-ray

bursts and X-ray flashes, and on the relation between these SNe and

other, more common varieties of core-collapse explosions.

 

ACS/SBC 11151

 

Evaluating the Role of Photoevaporation of Protoplanetary Disk Dispersal

 

Emission produced by accretion onto the central star leads to

photoevaporation, which may play a fundamental role in disk dispersal.

Models of disk photoevaporation by the central star are challenged by

two potential problems: the emission produced by accretion will be

substantially weaker for low-mass stars, and photoevaporation must

continue as accretion slows. Existing FUV spectra of CTTSs are biased to

solar-mass stars with high accretion rates, and are therefore

insufficient to address these problems. We propose use HST/ACS SBC

PR130L to obtain FUV spectra of WTTSs and of CTTSs at low masses and

mass accretion rates to provide crucial data to evaluate

photoevaporation models. We will estimate the FUV and EUV luminosities

of low-mass CTTSs with small mass accretion rates, CTTSs with transition

disks and slowed accretion, and of magnetically-active WTTSs.

 

WFPC2 11024

 

WFPC2 CYCLE 15 INTERNAL MONITOR

 

This calibration proposal is the Cycle 15 routine internal monitor for

WFPC2, to be run weekly to monitor the health of the cameras. A variety

of internal exposures are obtained in order to provide a monitor of the

integrity of the CCD camera electronics in both bays {both gain 7 and

gain 15 -- to test stability of gains and bias levels}, a test for

quantum efficiency in the CCDs, and a monitor for possible buildup of

contaminants on the CCD windows. These also provide raw data for

generating annual super-bias reference files for the calibration

pipeline.

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA calibration - CR Persistence Part 6

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non- standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science i

mages. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC2 11101

 

The Relevance of Mergers for Fueling AGNs: Answers from QSO Host

Galaxies

 

The majority of QSOs are known to reside in centers of galaxies that

look like ellipticals. Numerical simulations have shown that remnants of

galaxy mergers often closely resemble elliptical galaxies. However, it

is still strongly debated whether the majority of QSO host galaxies are

indeed the result of relatively recent mergers or whether they are

completely analogous to inactive ellipticals to which nothing

interesting has happened recently. To address this question, we recently

obtained deep HST ACS images for five QSO host galaxies that were

classified morphologically as ellipticals {GO-10421}. This pilot study

revealed striking signs of tidal interactions such as ripples, tidal

tails, and warped disks that were not detected in previous studies. Our

observations show that at least some "elliptical" QSO host galaxies are

the products of relatively recent merger events rather than old galaxies

formed at high redshift. However, the question remains whether the host

galaxies of classical QSOs are truly distinct from inactive ellipticals

and whether there is a connection between the merger events we detect

and the current nuclear activity. We must therefore place our results

into a larger statistical context. We are currently conducting an HST

archival study of inactive elliptical galaxies {AR-10941} to form a

control sample. We now propose to obtain deep HST/WFPC2 images of 13

QSOs whose host galaxies are classified as normal ellipticals. Comparing

the results for both samples will help us determine whether classical

QSOs reside in normal elliptical galaxies or not. Our recent pilot study

of five QSOs indicates that we can expect exciting results and deep

insights into the host galaxy morphology also for this larger sample of

QSOs. A statistically meaningful sample will help us determine the true

fraction of QSO hosts that suffered strong tidal interactions and thus,

whether a merger is indeed a requirement to trigger nuclear activity in

the most luminous AGNs. In addition to our primary science observations

with WFPC2, we will obtain NICMOS3 parallel observations with the

overall goal to select and characterize galaxy populations at high

redshifts. The imaging will be among the deepest NICMOS images: These

NICMOS images are expected to go to a limit a little over 1 magnitude

brighter than HUDF-NICMOS data, but over 13 widely separated fields,

with a total area about 1.5 times larger than HUDF-NICMOS. This

separation means that the survey will tend to average out effects of

cosmic variance. The NICMOS3 images will have sufficient resolution for

an initial characterization of galaxy morphologies, which is currently

one of the most active and promising areas in approaching the problem of

the formation of the first massive galaxies. The depth and area coverage

of our proposed NICMOS observations will also allow a careful study of

the mass function of galaxies at these redshifts. This provides a large

and unbiased sample, selected in terms of stellar mass and unaffected by

cosmic variance, to study the on-going star formation activity as a

function of mass {i.e. integrated star formation} at this very important

epoch.

 

NIC3 11107

 

Imaging of Local Lyman Break Galaxy Analogs: New Clues to Galaxy

Formation in the Early Universe

 

We have used the ultraviolet all-sky imaging survey currently being

conducted by the Galaxy Evolution Explorer {GALEX} to identify for the

first time a rare population of low- redshift starbursts with properties

remarkably similar to high-redshift Lyman Break Galaxies {LBGs}. These

"compact UV luminous galaxies" {UVLGs} resemble LBGs in terms of size,

SFR, surface brightness, mass, metallicity, kinematics, dust, and color.

The UVLG sample offers the unique opportunity of investigating some very

important properties of LBGs that have remained virtually inaccessible

at high redshift: their morphology and the mechanism that drives their

star formation. Therefore, in Cycle 15 we have imaged 7 UVLGs using ACS

in order to 1} characterize their morphology and look for signs of

interactions and mergers, and 2} probe their star formation histories

over a variety of timescales. The images show a striking trend of

small-scale mergers turning large amounts of gas into vigorous

starbursts {a process referred to as dissipational or "wet" merging}.

Here, we propose to complete our sample of 31 LBG analogs using the

ACS/SBC F150LP {FUV} and WFPC2 F606W {R} filters in order to create a

statistical sample to study the mechanism that triggers star formation

in UVLGs and its implications for the nature of LBGs. Specifically, we

will 1} study the trend between galaxy merging and SFR in UVLGs, 2}

artificially redshift the FUV images to z=1-4 and compare morphologies

with those in similarly sized samples of LBGs at the same rest-frame

wavelengths in e.g. GOODS, UDF, and COSMOS, 3} determine the presence

and morphology of significant stellar mass in "pre-burst" stars, and 4}

study their immediate environment. Together with our Spitzer

{IRAC+MIPS}, GALEX, SDSS and radio data, the HST observations will form

a unique union of data that may for the first time shed light on how the

earliest major episodes of star formation in high redshift galaxies came

about. This proposal was adapted from an ACS HRC+WFC proposal to meet

the new Cycle 16 observing constraints, and can be carried out using the

ACS/SBC and WFPC2 without compromising our original science goals.

 

WFPC2 11023

 

WFPC2 CYCLE 15 Standard Darks - part 1

 

This dark calibration program obtains dark frames every week in order to

provide data for the ongoing calibration of the CCD dark current rate,

and to monitor and characterize the evolution of hot pixels. Over an

extended period these data will also provide a monitor of radiation

damage to the CCDs.

 

WFPC2 11027

 

Visible Earth Flats

 

This proposal monitors flatfield stability. This proposal obtains

sequences of Earth streak flats to construct high quality flat fields

for the WFPC2 filter set. These flat fields will allow mapping of the

OTA illumination pattern and will be used in conjunction with previous

internal and external flats to generate new pipeline superflats. These

Earth flats will complement the Earth flat data obtained during cycles

4-14.

 

WFPC2 11178

 

Probing Solar System History with Orbits, Masses, and Colors of

Transneptunian Binaries

 

The recent discovery of numerous transneptunian binaries {TNBs} opens a

window into dynamical conditions in the protoplanetary disk where they

formed as well as the history of subsequent events which sculpted the

outer Solar System and emplaced them onto their present day heliocentric

orbits. To date, at least 47 TNBs have been discovered, but only about a

dozen have had their mutual orbits and separate colors determined,

frustrating their use to investigate numerous important scientific

questions. The current shortage of data especially cripples scientific

investigations requiring statistical comparisons among the ensemble

characteristics. We propose to obtain sufficient astrometry and

photometry of 23 TNBs to compute their mutual orbits and system masses

and to determine separate primary and secondary colors, roughly tripling

the sample for which this information is known, as well as extending it

to include systems of two near-equal size bodies. To make the most

efficient possible use of HST, we will use a Monte Carlo technique to

optimally schedule our observations.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS:

11010 - REACQ(1,0,1) early loss of lock

           REACQ(1,0,1) at 06:03:06 acquired fine lock at 06:08:08 but never

           achieved "Sci Init", and subsequently lost fine lock at 06:21:14, TERM

           EXP was not expected until 06:44:25

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                      SCHEDULED      SUCCESSFUL      FAILURE TIMES

FGS GSacq               04                04                

FGS REacq               10                09                  

OBAD with Maneuver 28                28         

LOSS of LOCK                                                 275/0621z          

 

SIGNIFICANT EVENTS: (None)