Notice: Due to the conversion of some ACS WFC or HRC observations into

WFPC2, or NICMOS observations after the loss of ACS CCD science

capability in January, there may be an occasional discrepancy between a

proposal's listed (and correct) instrument usage and the abstract that

follows it.

 

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT      # 4460

 

PERIOD COVERED: UT October 02, 2007 (DOY 275)

 

OBSERVATIONS SCHEDULED

 

NIC2 10487

 

A Search for Debris Disks in the Coeval Beta Pictoris Moving Group

 

Resolved observations of debris disks present us with the opportunity of

studying planetary evolution in other solar systems. We propose to

search for debris disks in the Beta Pictoris moving group {8-20 Myrs,

10-50 pc away} , which provides a coeval sample of multiple spectral

types, and it has already produced two magnificent resolved debris

disks: AU Mic and Beta Pic. Such coeval sample will provide us with a

snapshop of the crucial time in disk evolution in which the disk makes

the transition from optically thick to optically thin, and it will be

useful to study the stellar mass dependence of the disk evolution.

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA calibration - CR Persistence Part 6

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non- standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science i

mages. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC2 11219

 

Active Galactic Nuclei in nearby galaxies: a new view of the origin of

the radio-loud radio- quiet dichotomy?

 

Using archival HST and Chandra observations of 34 nearby early-type

galaxies {drawn from a complete radio selected sample} we have found

evidence that the radio-loud/radio-quiet dichotomy is directly connected

to the structure of the inner regions of their host galaxies in the

following sense: [1] Radio-loud AGN are associated with galaxies with

shallow cores in their light profiles [2] Radio-quiet AGN are only

hosted by galaxies with steep cusps. Since the brightness profile is

determined by the galaxy's evolution, through its merger history, our

results suggest that the same process sets the AGN flavour. This

provides us with a novel tool to explore the co-evolution of galaxies

and supermassive black holes, and it opens a new path to understand the

origin of the radio-loud/radio-quiet AGN dichotomy. Currently our

analysis is statistically incomplete as the brightness profile is not

available for 82 of the 116 targets. Most galaxies were not observed

with HST, while in some cases the study is obstructed by the presence of

dust features. We here propose to perform an infrared NICMOS snapshot

survey of these 82 galaxies. This will enable us to i} test the reality

of the dichotomic behaviour in a substantially larger sample; ii} extend

the comparison between radio-loud and radio-quiet AGN to a larger range

of luminosities.

 

WFPC2 11029

 

WFPC2 CYCLE 15 Intflat Linearity Check and Filter Rotation Anomaly

Monitor

 

Intflat observations will be taken to provide a linearity check: the

linearity test consists of a series of intflats in F555W, in each gain

and each shutter. A combination of intflats, visflats, and earthflats

will be used to check the repeatability of filter wheel motions.

{Intflat sequences tied to decons, visits 1-18 in prop 10363, have been

moved to the cycle 15 decon proposal xxxx for easier scheduling.} Note:

long-exposure WFPC2 intflats must be scheduled during ACS anneals to

prevent stray light from the WFPC2 lamps from contaminating long ACS

external exposures.

 

WFPC2 11176

 

Location and the Origin of Short Gamma-Ray Bursts

 

During the past decade extraordinary progress has been made in

determining the origin of long-duration gamma-ray bursts. It has been

conclusively shown that these objects derive from the deaths of massive

stars. Nonetheless, the origin of their observational cousins,

short-duration gamma-ray bursts {SGRBs} remains a mystery. While SGRBs

are widely thought to result from the inspiral of compact binaries, this

is a conjecture. A number of hosts of SGRBs have been identified, and

have been used by some to argue that SGRBs derive primarily from an

ancient population {~ 5 Gyr}; however, it is not known whether this

conclusion more accurately reflects selection biases or astrophysics.

Here we propose to employ a variant of a technique that we pioneered and

used to great effect in elucidating the origins of long-duration bursts.

We will examine the degree to which SGRB locations trace the red or blue

light of their hosts, and thus old or young stellar populations. This

approach will allow us to study the demographics of the SGRB population

in a manner largely free of the distance dependent selection effects

which have so far bedeviled this field, and should give direct insight

into the age of the SGRB progenitor population.

 

WFPC2 11178

 

Probing Solar System History with Orbits, Masses, and Colors of

Transneptunian Binaries

 

The recent discovery of numerous transneptunian binaries {TNBs} opens a

window into dynamical conditions in the protoplanetary disk where they

formed as well as the history of subsequent events which sculpted the

outer Solar System and emplaced them onto their present day heliocentric

orbits. To date, at least 47 TNBs have been discovered, but only about a

dozen have had their mutual orbits and separate colors determined,

frustrating their use to investigate numerous important scientific

questions. The current shortage of data especially cripples scientific

investigations requiring statistical comparisons among the ensemble

characteristics. We propose to obtain sufficient astrometry and

photometry of 23 TNBs to compute their mutual orbits and system masses

and to determine separate primary and secondary colors, roughly tripling

the sample for which this information is known, as well as extending it

to include systems of two near-equal size bodies. To make the most

efficient possible use of HST, we will use a Monte Carlo technique to

optimally schedule our observations.

 

WFPC2 11201

 

Systemic and Internal motions of the Magellanic Clouds: Third Epoch

Images

 

In Cycles 11 and 13 we obtained two epochs of ACS/HRC data for fields in

the Magellanic Clouds centered on background quasars. We used these data

to determine the proper motions of the LMC and SMC to better than 5% and

15% respectively. These are by far the best determinations of the proper

motions of these two galaxies. The results have a number of unexpected

implications for the Milky Way-LMC-SMC system. The implied

three-dimensional velocities are larger than previously believed, and

are not much less than the escape velocity in a standard 10^12 solar

mass Milky Way dark halo. Orbit calculations suggest the Clouds may not

be bound to the Milky Way or may just be on their first passage, both of

which would be unexpected in view of traditional interpretations of the

Magellanic Stream. Alternatively, the Milky Way dark halo may be a

factor of two more massive than previously believed, which would be

surprising in view of other observational constraints. Also, the

relative velocity between the LMC and SMC is larger than expected,

leaving open the possibility that the Clouds may not be bound to each

other. To further verify and refine our results we now request an epoch

of WFPC2/PC data for the fields centered on 40 quasars that have at

least one epoch of ACS imaging. We request execution in snapshot mode,

as in our previous programs, to ensure the most efficient use of HST

resources. A third epoch of data of these fields will provide crucial

information to verify that there are no residual systematic effects in

our previous measurements. More importantly, it will increase the time

baseline from 2 to 5 yrs and will increase the number of fields with at

least two epochs of data. This will reduce our uncertainties

correspondingly, so that we can better address whether the Clouds are

indeed bound to each other and to the Milky Way. It will also allow us

to constrain the internal motions of various populations within the

Clouds, and will allow us to determine a distance to the LMC using

rotational parallax.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                      SCHEDULED      SUCCESSFUL 

FGS GSacq               09                 09                

FGS REacq               05                 05                  

OBAD with Maneuver 28                 28         

 

SIGNIFICANT EVENTS: (None)