Notice:
Due to the conversion of some ACS WFC or HRC observations into
WFPC2,
or NICMOS observations after the loss of ACS CCD science
capability
in January, there may be an occasional discrepancy between a
proposal's
listed (and correct) instrument usage and the abstract that
follows
it.
HUBBLE
SPACE TELESCOPE - Continuing to collect World Class Science
DAILY
REPORT # 4461
PERIOD
COVERED: UT October 03, 2007 (DOY 276)
OBSERVATIONS
SCHEDULED
FGS
11211
An
Astrometric Calibration of Population II Distance Indicators
In
2002 HST produced a highly precise parallax for RR Lyrae. That
measurement
resulted in an absolute magnitude, M{V}= 0.61+/-0.11, a
useful
result, judged by the over ten refereed citations each year
since.
It is, however, unsatisfactory to have the direct,
parallax-based,
distance scale of Population II variables based on a
single
star. We propose, therefore, to obtain the parallaxes of four
additional
RR Lyrae stars and two Population II Cepheids, or
stars.
The Population II Cepheids lie with the RR Lyrae stars on a
common
K-band Period-Luminosity relation. Using these parallaxes to
inform
that relationship, we anticipate a zero-point error of 0.04
magnitude.
This result should greatly strengthen confidence in the
Population
II distance scale and increase our understanding of RR Lyrae
star
and Pop II Cepheid astrophysics.
NIC1/NIC2/NIC3
8795
NICMOS
Post-SAA calibration - CR Persistence Part 6
A
new procedure proposed to alleviate the CR-persistence problem of
NICMOS.
Dark frames will be obtained immediately upon exiting the SAA
contour
23, and every time a NICMOS exposure is scheduled within 50
minutes
of coming out of the SAA. The darks will be obtained in parallel
in
all three NICMOS Cameras. The POST-SAA darks will be non- standard
reference
files available to users with a USEAFTER date/time mark. The
keyword
'USEAFTER=date/time' will also be added to the header of each
POST-SAA
DARK frame. The keyword must be populated with the time, in
addition
to the date, because HST crosses the SAA ~8 times per day so
each
POST-SAA DARK will need to have the appropriate time specified, for
users
to identify the ones they need. Both the raw and processed images
will
be archived as POST-SAA DARKSs. Generally we expect that all NICMOS
science/calibration
observations started within 50 minutes of leaving an
SAA
will need such maps to remove the CR persistence from the science i
mages.
Each observation will need its own CRMAP, as different SAA
passages
leave different imprints on the NICMOS detectors.
NIC2
10857
Are
Organics Common in Outer Planetary Systems?
Mixtures
of water ice and organics seem to pervade surfaces in the outer
Solar
System, from the rings of Saturn to the Kuiper Belt Objects. The
early
Earth was bombarded by the leftover planetesimals from the
formation
of the planets, and these must have been rich in both ice and
carbon
to provide the building blocks of life. Scattered light from
debris
disks is remarkably similar in albedo {total scattering
efficiency}
and color {red} to the objects in the outer solar system.
Thus,
we have a hint that the same photochemical processes that happened
close
to home also happen around other stars. We propose to study the
color
of two debris disks in some detail. Scattering of light is the
only
window available to us to see the composition of debris disks in a
spatially
resolved manner and to assess their potential for containing
planets
like ours.
NIC3
11107
Imaging
of Local Lyman Break Galaxy Analogs: New Clues to Galaxy
Formation
in the Early Universe
We
have used the ultraviolet all-sky imaging survey currently being
conducted
by the Galaxy Evolution Explorer {GALEX} to identify for the
first
time a rare population of low- redshift starbursts with properties
remarkably
similar to high-redshift Lyman Break Galaxies {LBGs}. These
"compact
UV luminous galaxies" {UVLGs} resemble LBGs in terms of size,
SFR,
surface brightness, mass, metallicity, kinematics, dust, and color.
The
UVLG sample offers the unique opportunity of investigating some very
important
properties of LBGs that have remained virtually inaccessible
at
high redshift: their morphology and the mechanism that drives their
star
formation. Therefore, in Cycle 15 we have imaged 7 UVLGs using ACS
in
order to 1} characterize their morphology and look for signs of
interactions
and mergers, and 2} probe their star formation histories
over
a variety of timescales. The images show a striking trend of
small-scale
mergers turning large amounts of gas into vigorous
starbursts
{a process referred to as dissipational or "wet" merging}.
Here,
we propose to complete our sample of 31 LBG analogs using the
ACS/SBC
F150LP {FUV} and WFPC2 F606W {R} filters in order to create a
statistical
sample to study the mechanism that triggers star formation
in
UVLGs and its implications for the nature of LBGs. Specifically, we
will
1} study the trend between galaxy merging and SFR in UVLGs, 2}
artificially
redshift the FUV images to z=1-4 and compare morphologies
with
those in similarly sized samples of LBGs at the same rest-frame
wavelengths
in e.g. GOODS, UDF, and COSMOS, 3} determine the presence
and
morphology of significant stellar mass in "pre-burst" stars, and 4}
study
their immediate environment. Together with our Spitzer
{IRAC+MIPS},
GALEX, SDSS and radio data, the HST observations will form
a
unique union of data that may for the first time shed light on how the
earliest
major episodes of star formation in high redshift galaxies came
about.
This proposal was adapted from an ACS HRC+WFC proposal to meet
the
new Cycle 16 observing constraints, and can be carried out using the
ACS/SBC
and WFPC2 without compromising our original science goals.
WFPC2
11113
Binaries
in the Kuiper Belt: Probes of Solar System Formation and
Evolution
The
discovery of binaries in the Kuiper Belt and related small body
populations
is powering a revolutionary step forward in the study of
this
remote region. Three quarters of the known binaries in the Kuiper
Belt
have been discovered with HST, most by our snapshot surveys. The
statistics
derived from this work are beginning to yield surprising and
unexpected
results. We have found a strong concentration of binaries
among
low-inclination Classicals, a possible size cutoff to binaries
among
the Centaurs, an apparent preference for nearly equal mass
binaries,
and a strong increase in the number of binaries at small
separations.
We propose to continue this successful program in Cycle 16;
we
expect to discover at least 13 new binary systems, targeted to
subgroups
where these discoveries can have the greatest impact.
WFPC2
11128
Time
Scales Of Bulge Formation In Nearby Galaxies
Traditionally,
bulges are thought to fit well into galaxy formation
models
of hierarchical merging. However, it is now becoming well
established
that many bulges formed through internal, secular evolution
of
the disk rather than through mergers. We call these objects
pseudobulges.
Much is still unknown about pseudobulges, the most
pressing
questions being: How, exactly, do they build up their mass? How
long
does it take? And, how many exist? We are after an answer to these
questions.
If pseudobulges form and evolve over longer periods than the
time
between mergers, then a significant population of pseudobulges is
hard
to explain within current galaxy formation theories. A pseudobulge
indicates
that a galaxy has most likely not undergone a major merger
since
the formation of the disk. The ages of pseudobulges give us an
estimate
for the time scale of this quiescent evolution. We propose to
use
24 orbits of HST time to complete UBVIH imaging on a sample of 33
nearby
galaxies that we have observed with Spitzer in the mid-IR. These
data
will be used to measure spatially resolved stellar population
parameters
{mean stellar age, metallicity, and star formation history};
comparing
ages to star formation rates allows us to accurately constrain
the
time scale of pseudobulge formation. Our sample of bulges includes
both
pseudo- and classical bulges, and evenly samples barred and
unbarred
galaxies. Most of our sample is imaged, 13 have complete UBVIH
coverage;
we merely ask to complete missing observations so that we may
construct
a uniform sample for studying bulge formation. We also wish to
compare
the stellar population parameters to a variety of bulge and
global
galaxy properties including star formation rates, dynamics,
internal
bulge morphology, structure from bulge-disk decompositions, and
gas
content. Much of this data set is already or is being assembled.
This
will allow us to derive methods of pseudobulge identification that
can
be used to accurately count pseudobulges in large surveys. Aside
from
our own science goals, we will present this broad set of data to
the
community. Thus, we waive proprietary periods for all observations.
WFPC2
11202
The
Structure of Early-type Galaxies: 0.1-100 Effective Radii
The
structure, formation and evolution of early-type galaxies is still
largely
an open problem in cosmology: how does the Universe evolve from
large
linear scales dominated by dark matter to the highly non-linear
scales
of galaxies, where baryons and dark matter both play important,
interacting,
roles? To understand the complex physical processes
involved
in their formation scenario, and why they have the tight
scaling
relations that we observe today {e.g. the Fundamental Plane}, it
is
critically important not only to understand their stellar structure,
but
also their dark-matter distribution from the smallest to the largest
scales.
Over the last three years the SLACS collaboration has developed
a
toolbox to tackle these issues in a unique and encompassing way by
combining
new non-parametric strong lensing techniques, stellar
dynamics,
and most recently weak gravitational lensing, with
high-quality
Hubble Space Telescope imaging and VLT/Keck spectroscopic
data
of early-type lens systems. This allows us to break degeneracies
that
are inherent to each of these techniques separately and probe the
mass
structure of early-type galaxies from 0.1 to 100 effective radii.
The
large dynamic range to which lensing is sensitive allows us both to
probe
the clumpy substructure of these galaxies, as well as their
low-density
outer haloes. These methods have convincingly been
demonstrated,
by our team, using smaller pilot-samples of SLACS lens
systems
with HST data. In this proposal, we request observing time with
WFPC2
and NICMOS to observe 53 strong lens systems from SLACS, to obtain
complete
multi-color imaging for each system. This would bring the total
number
of SLACS lens systems to 87 with completed HST imaging and
effectively
doubles the known number of galaxy-scale strong lenses. The
deep
HST images enable us to fully exploit our new techniques, beat down
low-number
statistics, and probe the structure and evolution of
early-type
galaxies, not only with a uniform data-set an order of
magnitude
larger than what is available now, but also with a fully
coherent
and self-consistent methodological approach!
WFPC2
11227
The
orbital period for an ultraluminous X-ray source in NGC1313
The
ultraluminous X-ray sources {ULXs} are extragalactic point sources
with
luminosities that exceed the Eddington luminosity for conventional
stellar-mass
black holes by factors of 10 - 100. It has been hotly
debated
whether the ULXs are just common stellar-mass black hole sources
with
beamed emission or whether they are sub-Eddington sources that are
powered
by the long-sought intermediate mass black holes {IMBH}. To
firmly
decide this question, one must obtain dynamical mass measurements
through
photometric and spectroscopic monitoring of the secondaries of
these
system. The crucial first step is to establish the orbital period
of
a ULX, and arguably the best way to achieve this goal is by
monitoring
its ellipsoidal light curve. The extreme ULX NGC1313 X-2
provides
an outstanding target for an orbital period determination
because
its relatively bright optical counterpart {V = 23.5} showed a
15%
variation between two HST observations separated by three months.
This
level of variability is consistent with that expected for a tidally
distorted
secondary star. Here we propose a set of 20 imaging
observations
with HST/WFPC2 to define the orbital period. This would be
the
first photometric measurement of the orbital period of a ULX binary.
Subsequently,
we will propose to obtain spectroscopic observations to
obtain
its radial velocity amplitude and thereby a dynamical estimate of
its
mass.
FLIGHT
OPERATIONS SUMMARY:
Significant
Spacecraft Anomalies: (The following are preliminary reports
of
potential non-nominal performance that will be investigated.)
HSTARS:
(None)
COMPLETED
OPS REQUEST: (None)
COMPLETED
OPS NOTES: (None)
SCHEDULED
SUCCESSFUL
FGS
GSacq
09
09
FGS
REacq
05
05
OBAD
with Maneuver 28
28
SIGNIFICANT
EVENTS: (None)