Notice: Due to the conversion of some ACS WFC or HRC observations into

WFPC2, or NICMOS observations after the loss of ACS CCD science

capability in January, there may be an occasional discrepancy between a

proposal's listed (and correct) instrument usage and the abstract that

follows it.

 

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT      # 4471

 

PERIOD COVERED: UT October 18, 2007 (DOY 291)

 

OBSERVATIONS SCHEDULED

 

FGS 11211

 

An Astrometric Calibration of Population II Distance Indicators

 

In 2002 HST produced a highly precise parallax for RR Lyrae. That

measurement resulted in an absolute magnitude, M{V}= 0.61+/-0.11, a

useful result, judged by the over ten refereed citations each year

since. It is, however, unsatisfactory to have the direct,

parallax-based, distance scale of Population II variables based on a

single star. We propose, therefore, to obtain the parallaxes of four

additional RR Lyrae stars and two Population II Cepheids, or W Vir

stars. The Population II Cepheids lie with the RR Lyrae stars on a

common K-band Period-Luminosity relation. Using these parallaxes to

inform that relationship, we anticipate a zero-point error of 0.04

magnitude. This result should greatly strengthen confidence in the

Population II distance scale and increase our understanding of RR Lyrae

star and Pop II Cepheid astrophysics.

 

NIC1/NIC2/NIC3 8794

 

NICMOS Post-SAA calibration - CR Persistence Part 5

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non- standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science

images. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC3 11082

 

NICMOS Imaging of GOODS: Probing the Evolution of the Earliest Massive

Galaxies, Galaxies Beyond Reionization, and the High Redshift Obscured

Universe

 

(uses ACS/SBC and WFPC2)

 

Deep near-infrared imaging provides the only avenue towards

understanding a host of astrophysical problems, including: finding

galaxies and AGN at z > 7, the evolution of the most massive galaxies,

the triggering of star formation in dusty galaxies, and revealing

properties of obscured AGN. As such, we propose to observe 60 selected

areas of the GOODS North and South fields with NICMOS Camera 3 in the

F160W band pointed at known massive M > 10^11 M_0 galaxies at z > 2

discovered through deep Spitzer imaging. The depth we will reach {26.5

AB at 5 sigma} in H_160 allows us to study the internal properties of

these galaxies, including their sizes and morphologies, and to

understand how scaling relations such as the Kormendy relationship

evolved. Although NIC3 is out of focus and undersampled, it is currently

our best opportunity to study these galaxies, while also sampling enough

area to perform a general NIR survey 1/3 the size of an ACS GOODS field.

These data will be a significant resource, invaluable for many other

science goals, including discovering high redshift galaxies at z > 7,

the evolution of galaxies onto the Hubble sequence, as well as examining

obscured AGN and dusty star formation at z > 1.5. The GOODS fields are

the natural location for HST to perform a deep NICMOS imaging program,

as extensive data from space and ground based observatories such as

Chandra, GALEX, Spitzer, NOAO, Keck, Subaru, VLT, JCMT, and the VLA are

currently available for these regions. Deep high-resolution

near-infrared observations are the one missing ingredient to this

survey, filling in an important gap to create the deepest, largest, and

most uniform data set for studying the faint and distant universe. The

importance of these images will increase with time as new facilities

come on line, most notably WFC3 and ALMA, and for the planning of future

JWST observations.

 

WFPC2 11141

 

White dwarfs in the open star cluster NGC 188

 

White dwarf cooling sequences represent the only ways in which we can

determine ages of Galactic components such as the disk and the halo, and

they are an independent check on main sequence ages of globular star

clusters. These age measurements rely heavily on theoretical cooling

models, many of which disagree by as much as a few gigayears for the

coolest white dwarfs. Further, observations of the white dwarf sequence

in the super metal- rich open cluster NGC 6791 have found a white dwarf

age several gigayears younger than the accepted cluster age determined

by main-sequence fitting. The white dwarf sequence of the

solar-metallicity, 7-Gyr old open cluster NGC 188 can provide some

much-needed insight into these uncertainties, but previous HST

observations were too shallow to detect the oldest, faintest white

dwarfs in the cluster. We propose deep imaging of two fields at the

center of the cluster with the following goals: {1} To detect the end of

the white dwarf cooling sequence, providing a much-needed empirical data

point for cool white dwarf evolutionary models, {2} to compare the white

dwarf luminosity function of NGC 188 with that of NGC 6791 to determine

if the odd white dwarf sequence in the latter cluster is due to the

cluster's high metallicity or due to a shortcoming in theoretical

models, and {3} to determine via photometry the masses of white dwarfs

formed by solar-mass stars, a quantity not yet empirically measured.

 

WFPC2 11202

 

The Structure of Early-type Galaxies: 0.1-100 Effective Radii

 

The structure, formation and evolution of early-type galaxies is still

largely an open problem in cosmology: how does the Universe evolve from

large linear scales dominated by dark matter to the highly non-linear

scales of galaxies, where baryons and dark matter both play important,

interacting, roles? To understand the complex physical processes

involved in their formation scenario, and why they have the tight

scaling relations that we observe today {e.g. the Fundamental Plane}, it

is critically important not only to understand their stellar structure,

but also their dark-matter distribution from the smallest to the largest

scales. Over the last three years the SLACS collaboration has developed

a toolbox to tackle these issues in a unique and encompassing way by

combining new non-parametric strong lensing techniques, stellar

dynamics, and most recently weak gravitational lensing, with

high-quality Hubble Space Telescope imaging and VLT/Keck spectroscopic

data of early-type lens systems. This allows us to break degeneracies

that are inherent to each of these techniques separately and probe the

mass structure of early-type galaxies from 0.1 to 100 effective radii.

The large dynamic range to which lensing is sensitive allows us both to

probe the clumpy substructure of these galaxies, as well as their

low-density outer haloes. These methods have convincingly been

demonstrated, by our team, using smaller pilot-samples of SLACS lens

systems with HST data. In this proposal, we request observing time with

WFPC2 and NICMOS to observe 53 strong lens systems from SLACS, to obtain

complete multi-color imaging for each system. This would bring the total

number of SLACS lens systems to 87 with completed HST imaging and

effectively doubles the known number of galaxy-scale strong lenses. The

deep HST images enable us to fully exploit our new techniques, beat down

low-number statistics, and probe the structure and evolution of

early-type galaxies, not only with a uniform data-set an order of

magnitude larger than what is available now, but also with a fully

coherent and self-consistent methodological approach!

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS:

11029 - ReAcq(2,1,1) failed to RGA Hold (Note, this HSTAR OCCURRED ON DAY 283)

           OTA SE review of PTAS processing showed that ReAcq(2,1,1) at

           283/05:07:15 failed due to scan step limit exceeded on FGS2.

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                      SCHEDULED      SUCCESSFUL 

FGS GSacq               06                 06                   

FGS REacq               08                 08                                

OBAD with Maneuver 24                 24         

 

SIGNIFICANT EVENTS: (None)