Notice:
Due to the conversion of some ACS WFC or HRC observations into
WFPC2,
or NICMOS observations after the loss of ACS CCD science
capability
in January, there may be an occasional discrepancy between a
proposal's
listed (and correct) instrument usage and the abstract that
follows
it.
HUBBLE
SPACE TELESCOPE - Continuing to collect World Class Science
DAILY
REPORT # 4484
PERIOD
COVERED: UT November 06, 2007 (DOY 310)
OBSERVATIONS
SCHEDULED
ACS/SBC
11215
New
Sightlines for the Study of Intergalactic Helium: Dozens of
High-Confidence,
UV- Bright Quasars from SDSS/GALEX
The
reionization of IGM helium is thought to have occurred at redshifts
of
z=3 to 4. Detailed study of HeII Lyman-alpha absorption toward a
handful
of QSOs at 2.7<z<3.3 demonstrated the high potential of such IGM
probes,
but the critically small sample size limits confidence in
cosmological
inferences. The requisite unobscured sightlines to high-z
are
extremely rare, but SDSS provides 5800, z>3.1 QSOs potentially
suitable
for HeII studies. We've cross-correlated SDSS quasars with
GALEX
UV sources to obtain dozens of new, high confidence, candidate
sightlines
{z=3.1-4.9} potentially useful for detailed HeII studies with
HST.
We propose brief, 2-orbit reconnaissance ACS SBC prism exposures
toward
each of the best dozen new quasars, to definitively verify UV
flux
down to HeII. Our combined SDSS/GALEX selection insures a high
confirmation
rate, as the quasars are already known to be UV bright in
GALEX.
Our program will provide a statistical sample of HeII sightlines
extending
to high redshift, enabling future long exposure follow-up
spectra
with the SBC prism, or superb quality COS or STIS spectra after
SM4.
Stacks of our prism spectra will also directly yield ensemble
information.
Ultimately, the new sightlines will enable confident
measures
of the spectrum and evolution of the ionizing background, the
evolution
of HeII opacity, the epoch of helium reionization, and the
density
of IGM baryons.
NIC1/NIC2/NIC3
8794
NICMOS Post-SAA calibration - CR Persistence Part 5
A
new procedure proposed to alleviate the CR-persistence problem of
NICMOS.
Dark frames will be obtained immediately upon exiting the SAA
contour
23, and every time a NICMOS exposure is scheduled within 50
minutes
of coming out of the SAA. The darks will be obtained in parallel
in
all three NICMOS Cameras. The POST-SAA darks will be non- standard
reference
files available to users with a USEAFTER date/time mark. The
keyword
'USEAFTER=date/time' will also be added to the header of each
POST-SAA
DARK frame. The keyword must be populated with the time, in
addition
to the date, because HST crosses the SAA ~8 times per day so
each
POST-SAA DARK will need to have the appropriate time specified, for
users
to identify the ones they need. Both the raw and processed images
will
be archived as POST-SAA DARKs. Generally we expect that all NICMOS
science/calibration
observations started within 50 minutes of leaving an
SAA
will need such maps to remove the CR persistence from the science
images.
Each observation will need its own CRMAP, as different SAA
passages
leave different imprints on the NICMOS detectors.
NIC2
11197
Sweeping
Away the Dust: Reliable Dark Energy with an Infrared Hubble
Diagram
We
propose building a high-z Hubble Diagram using type Ia supernovae
observed
in the infrared rest-frame J-band. The infrared has a number of
exceptional
properties. The effect of dust extinction is minimal,
reducing
a major systematic that may be biasing dark energy
measurements.
Also, recent work indicates that type Ia supernovae are
true
standard candles in the infrared meaning that our Hubble diagram
will
be resistant to possible evolution in the Phillip's relation over
cosmic
time. High signal-to-noise measurements of 16 type Ia events at
z~0.4
will be compared with an independent optical Hubble diagram from
the
ESSENCE project to test for a shift in the derived dark energy
equation
of state due to a systematic bias. In Cycle 15 we obtained
NICMOS
photometry of 8 ESSENCE supernovae and are awaiting template
observations
to place them on the IR Hubble diagram. Here we request
another
8 supernovae be studied in the final season of the ESSENCE
search.
Because of the bright sky background, H-band photometry of z~0.4
supernovae
is not feasible from the ground. Only the superb image
quality
and dark infrared sky seen by HST makes this test possible. This
experiment
may also lead to a better, more reliable way of mapping the
expansion
history of the universe with the Joint Dark Energy Mission.
NIC3
11334
NICMOS
Cycle 16 Spectrophotometry
Observation
of the three primary WD flux standards must be repeated to
refine
the NICMOS absolute calibration and monitor for sensitivity
degradation.
So far, NICMOS grism spectrophotometry is available for
only
~16 stars with good STIS spectra at shorter wavelengths. There are
more
in the HST CALSPEC standard star data base with good STIS spectra
that
would also become precise IR standards with NICMOS absolute SED
measurements.
Monitoring the crucial three very red stars (M, L, T) for
variability
and better S/N in the IR. Apparent variability was
discovered
at shorter wavelengths during the ACS cross-calibration work
that
revealed a ~2% discrepancy of the cool star fluxes with respect to
the
hot primary WD standards. About a third of these stars are bright
enough
to do in one orbit, the rest require 2 orbits.
WFPC2
11029
WFPC2
CYCLE 15 Intflat Linearity Check and Filter Rotation Anomaly
Monitor
Intflat
observations will be taken to provide a linearity check: the
linearity
test consists of a series of intflats in F555W, in each gain
and
each shutter. A combination of intflats, visflats, and earthflats
will
be used to check the repeatability of filter wheel motions.
{Intflat
sequences tied to decons, visits 1-18 in prop 10363, have been
moved
to the cycle 15 decon proposal xxxx for easier scheduling.} Note:
long-exposure
WFPC2 intflats must be scheduled during ACS anneals to
prevent
stray light from the WFPC2 lamps from contaminating long ACS
external
exposures.
WFPC2
11038
Narrow
Band and Ramp Filter Closeout
These
observations are to improve calibration of narrow band and ramp
filters.
We also test for changes in the filter properties during
WFPC2's
14 years on-board HST.
WFPC2
11202
The
Structure of Early-type Galaxies: 0.1-100 Effective Radii
The
structure, formation and evolution of early-type galaxies is still
largely
an open problem in cosmology: how does the Universe evolve from
large
linear scales dominated by dark matter to the highly non-linear
scales
of galaxies, where baryons and dark matter both play important,
interacting,
roles? To understand the complex physical processes
involved
in their formation scenario, and why they have the tight
scaling
relations that we observe today {e.g. the Fundamental Plane}, it
is
critically important not only to understand their stellar structure,
but
also their dark-matter distribution from the smallest to the largest
scales.
Over the last three years the SLACS collaboration has developed
a
toolbox to tackle these issues in a unique and encompassing way by
combining
new non-parametric strong lensing techniques, stellar
dynamics,
and most recently weak gravitational lensing, with
high-quality
Hubble Space Telescope imaging and VLT/Keck spectroscopic
data
of early-type lens systems. This allows us to break degeneracies
that
are inherent to each of these techniques separately and probe the
mass
structure of early-type galaxies from 0.1 to 100 effective radii.
The
large dynamic range to which lensing is sensitive allows us both to
probe
the clumpy substructure of these galaxies, as well as their
low-density
outer haloes. These methods have convincingly been
demonstrated,
by our team, using smaller pilot-samples of SLACS lens
systems
with HST data. In this proposal, we request observing time with
WFPC2
and NICMOS to observe 53 strong lens systems from SLACS, to obtain
complete
multi-color imaging for each system. This would bring the total
number
of SLACS lens systems to 87 with completed HST imaging and
effectively
doubles the known number of galaxy-scale strong lenses. The
deep
HST images enable us to fully exploit our new techniques, beat down
low-number
statistics, and probe the structure and evolution of
early-type
galaxies, not only with a uniform data-set an order of
magnitude
larger than what is available now, but also with a fully
coherent
and self-consistent methodological approach!
WFPC2
11307
Completing
the ACS Nearby Galaxy Survey with WFPC2
We
are requesting 25 orbits of Director's Discretionary Time to complete
the
primary science goals of our highly-ranked ACS Nearby Galaxy Survey
Treasury
program {ANGST}. Our program lost ~2/3 of its orbits due to the
ACS
failure. Roughly half of these were restored as a result of an
appeal
to the Telescope Time Review Board which re-scoped the program.
The
Board's response to our appeal was explicit in terms of which
targets
were to be observed and how. We were directed to request
Director's
discretionary time for the components of the appeal which
were
not granted by the Review Board, but which were vital to the
success
of the program. The observing strategy for ANGST is two-fold: to
obtain
one deep field per galaxy which enables derivation of an accurate
ancient
star formation history, and to obtain radial tilings sufficient
for
recovering the full star formation history. The Review Board granted
WFPC2
observations for deep fields in 7 galaxies, but no time for radial
tilings.
However, recovering the full star formation history of a galaxy
is
not possible without additional radial coverage. We have searched the
archives
for observations which may be used in place of the tilings
{conceding
some of the Treasury goals, but providing significant
constraints
on the full star formation history}, and have identified
suitable
observations for all but two of the galaxies. Here we request
DD
time for radial tilings for those last two galaxies.
WFPC2/ACS/HRC/WFPC
11020
Cycle
15 Focus Monitor
The
focus of HST is measured primarily with ACS/HRC over full CVZ orbits
to
obtain accurate mean focus values via a well sampled breathing curve.
Coma
and astigmatism are also determined from the same data in order to
further
understand orbital effects on image quality and optical
alignments.
To monitor the stability of ACS to WFPC2 relative focii,
we've
carried over from previous focus monitor programs parallel
observations
taken with the two cameras at suitable orientations of
previously
observed targets, and interspersed them with the HRC CVZ
visits.
FLIGHT
OPERATIONS SUMMARY:
Significant
Spacecraft Anomalies: (The following are preliminary reports
of
potential non-nominal performance that will be investigated.)
HSTARS:
(None)
COMPLETED
OPS REQUEST: (None)
COMPLETED
OPS NOTES: (None)
SCHEDULED
SUCCESSFUL
FGS
GSacq
06
06
FGS
REacq
06
06
OBAD
with Maneuver
24
24
SIGNIFICANT
EVENTS: (None)