Notice: Due to the conversion of some ACS WFC or HRC observations into

WFPC2, or NICMOS observations after the loss of ACS CCD science

capability in January, there may be an occasional discrepancy between a

proposal's listed (and correct) instrument usage and the abstract that

follows it.

 

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT      # 4493

 

PERIOD COVERED: UT November 20,21,22,23,24,25, 2007 (DOY 324,325,326,327,328,329)

 

OBSERVATIONS SCHEDULED

 

 

NIC1/NIC2/NIC3 8794

 

NICMOS Post-SAA calibration - CR Persistence Part 5

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non- standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science

images. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

WFPC2 11289

 

SL2S: The Strong Lensing Legacy Survey

 

Recent systematic surveys of strong galaxy-galaxy lenses {CLASS, SLACS,

GOODS, etc.} are producing spectacular results for galaxy masses roughly

below a transition mass M~10^13 Mo. The observed lens properties and

their evolution up to z~0.2, consistent with numerical simulations, can

be described by isothermal elliptical potentials. In contrast, modeling

of giant arcs in X-ray luminous clusters {halo masses M >~10^13 Mo}

favors NFW mass profiles, suggesting that dark matter halos are not

significantly affected by baryon cooling. Until recently, lensing

surveys were neither deep nor extended enough to probe the intermediate

mass density regime, which is fundamental for understanding the assembly

of structures. The CFHT Legacy Survey now covers 125 square degrees, and

thus offers a large reservoir of strong lenses probing a large range of

mass densities up to z~1. We have extracted a list of 150 strong lenses

using the most recent CFHTLS data release via automated procedures.

Following our first SNAPSHOT proposal in cycle 15, we propose to

continue the Hubble follow-up targeting a larger list of 130 lensing

candidates. These are intermediate mass range candidates {between

galaxies and clusters} that are selected in the redshift range of 0.2-1

with no a priori X-ray selection. The HST resolution is necessary for

confirming the lensing candidates, accurate modeling of the lenses, and

probing the total mass concentration in galaxy groups up to z~1 with the

largest unbiased sample available to date.

 

ACS/SBC 11225

 

The Wavelength Dependence of Accretion Disk Structure

 

We can now routinely measure the size of quasar accretion disks using

gravitational microlensing of lensed quasars. The next step to testing

accretion disk models is to measure the size of accretion disks as a

function of wavelength, particularly at the UV and X-ray wavelengths

that should probe the inner, strong gravity regime. Here we focus on two

four-image quasar lenses that already have optical {R band} and X-ray

size measurements using microlensing. We will combine the HST

observations with ground-based monitoring to measure the disk size as a

function of wavelength from the near-IR to the UV. We require HST to

measure the image flux ratios in the ultraviolet continuum near the

Lyman limit of the quasars. The selected targets have estimated black

hole masses that differ by an order of magnitude, and we should find

wavelength scalings for the two systems that are very different because

the Blue/UV wavelengths should correspond to parts of the disk near the

inner edge for the high mass system but not in the low mass system. The

results will be modeled using a combination of simple thin disk models

and complete relativistic disk models. While requiring only 18 orbits,

success for one system requires observations in both Cycles 16 and 17.

 

WFPC2 11222

 

Direct Detection and Mapping of Star Forming Regions in Nearby, Luminous

Quasars

 

We propose to carry out narrow-band emission line imaging observations

of 8 quasars at z=0.05-0.15 with the WFPC2 ramp filters and with the

NICMOS narrow-band filters. We will obtain images in the [O II], [O

III], H-beta, and Pa-alpha emission line bands to carry out a series of

diagnostic tests aimed at detecting and mapping out star-forming regions

in the quasar host galaxies. This direct detection of star-forming

regions will confirm indirect indications for star formation in quasar

host galaxies. It will provide a crucial test for models of quasar and

galaxy evolution, that predict the co-existence of starbursts and

"monsters" and will solve the puzzle of why different indicators of star

formation give contradictory results. A secondary science goal is to

assess suggested correlations between quasar luminosity and the size of

the narrow-line region.

 

WFPC2 11216

 

HST / Chandra Monitoring of a Dramatic Flare in the M87 Jet

 

As the nearest galaxy with an optical jet, M87 affords an unparalleled

opportunity to study extragalactic jet phenomena at the highest

resolution. During 2002, HST and Chandra monitoring of the M87 jet

detected a dramatic flare in knot HST-1 located ~1" from the nucleus.

Its optical brightness eventually increased seventy-fold and peaked in

2005; the X- rays show a similarly dramatic outburst. In both bands

HST-1 is still extremely bright and greatly outshines the galaxy

nucleus. To our knowledge this is the first incidence of an optical or

X-ray outburst from a jet region which is spatially distinct from the

core source -- this presents an unprecedented opportunity to study the

processes responsible for non- thermal variability and the X-ray

emission. We propose five epochs of HST/WFPC2 flux monitoring during

Cycle 16, as well as seven epochs of Chandra/ACIS observation {5ksec

each, six Chandra epochs contemporary with HST}. At two of the HST/WFPC2

epochs we also gather spectral information, and at one epoch we will map

the magnetic field structure. The results of this investigation are of

key importance not only for understanding the nature of the X-ray

emission of the M87 jet, but also for understanding flares in blazar

jets, which are highly variable, but where we have never before been

able to resolve the flaring region in the optical or X-rays. These new

observations will allow us to track the decay phase of the giant flare,

and study smaller secondary flares such as seen late in 2006. Ultimately

we will test synchrotron emission models for the X-ray outburst,

constrain particle acceleration and loss timescales, and study the jet

dynamics associated with this flaring component.

 

FGS 11211

 

An Astrometric Calibration of Population II Distance Indicators

 

In 2002 HST produced a highly precise parallax for RR Lyrae. That

measurement resulted in an absolute magnitude, M{V}= 0.61+/-0.11, a

useful result, judged by the over ten refereed citations each year

since. It is, however, unsatisfactory to have the direct,

parallax-based, distance scale of Population II variables based on a

single star. We propose, therefore, to obtain the parallaxes of four

additional RR Lyrae stars and two Population II Cepheids, or W Vir

stars. The Population II Cepheids lie with the RR Lyrae stars on a

common K-band Period-Luminosity relation. Using these parallaxes to

inform that relationship, we anticipate a zero-point error of 0.04

magnitude. This result should greatly strengthen confidence in the

Population II distance scale and increase our understanding of RR Lyrae

star and Pop II Cepheid astrophysics.

 

WEPC2 11196

 

An Ultraviolet Survey of Luminous Infrared Galaxies in the Local

Universe

 

At luminosities above 10^11.4 L_sun, the space density of far-infrared

selected galaxies exceeds that of optically selected galaxies. These

Luminous Infrared Galaxies {LIRGs} are primarily interacting or merging

disk galaxies undergoing starbursts and creating/fueling central AGN. We

propose far {ACS/SBC/F140LP} and near {WFPC2/PC/F218W} UV imaging of a

sample of 27 galaxies drawn from the complete IRAS Revised Bright Galaxy

Sample {RBGS} LIRGs sample and known, from our Cycle 14 B and I-band ACS

imaging observations, to have significant numbers of bright {23 < B < 21

mag} star clusters in the central 30 arcsec. The HST UV data will be

combined with previously obtained HST, Spitzer, and GALEX images to {i}

calculate the ages of the clusters as function of merger stage, {ii}

measure the amount of UV light in massive star clusters relative to

diffuse regions of star formation, {iii} assess the feasibility of using

the UV slope to predict the far- IR luminosity {and thus the star

formation rate} both among and within IR-luminous galaxies, and {iv}

provide a much needed catalog of rest-frame UV morphologies for

comparison with rest-frame UV images of high-z LIRGs and Lyman Break

Galaxies. These observations will achieve the resolution required to

perform both detailed photometry of compact structures and spatial

correlations between UV and redder wavelengths for a physical

interpretation our IRX-Beta results. The HST UV data, combined with the

HST ACS, Spitzer, Chandra, and GALEX observations of this sample, will

result in the most comprehensive study of luminous starburst galaxies to

date.

 

WFPC2 11178

 

Probing Solar System History with Orbits, Masses, and Colors of

Transneptunian Binaries

 

The recent discovery of numerous transneptunian binaries {TNBs} opens a

window into dynamical conditions in the protoplanetary disk where they

formed as well as the history of subsequent events which sculpted the

outer Solar System and emplaced them onto their present day heliocentric

orbits. To date, at least 47 TNBs have been discovered, but only about a

dozen have had their mutual orbits and separate colors determined,

frustrating their use to investigate numerous important scientific

questions. The current shortage of data especially cripples scientific

investigations requiring statistical comparisons among the ensemble

characteristics. We propose to obtain sufficient astrometry and

photometry of 23 TNBs to compute their mutual orbits and system masses

and to determine separate primary and secondary colors, roughly tripling

the sample for which this information is known, as well as extending it

to include systems of two near-equal size bodies. To make the most

efficient possible use of HST, we will use a Monte Carlo technique to

optimally schedule our observations.

 

WFPC2 11176

 

Location and the Origin of Short Gamma-Ray Bursts

 

During the past decade extraordinary progress has been made in

determining the origin of long-duration gamma-ray bursts. It has been

conclusively shown that these objects derive from the deaths of massive

stars. Nonetheless, the origin of their observational cousins,

short-duration gamma-ray bursts {SGRBs} remains a mystery. While SGRBs

are widely thought to result from the inspiral of compact binaries, this

is a conjecture. A number of hosts of SGRBs have been identified, and

have been used by some to argue that SGRBs derive primarily from an

ancient population {~ 5 Gyr}; however, it is not known whether this

conclusion more accurately reflects selection biases or astrophysics.

Here we propose to employ a variant of a technique that we pioneered and

used to great effect in elucidating the origins of long-duration bursts.

We will examine the degree to which SGRB locations trace the red or blue

light of their hosts, and thus old or young stellar populations. This

approach will allow us to study the demographics of the SGRB population

in a manner largely free of the distance dependent selection effects

which have so far bedeviled this field, and should give direct insight

into the age of the SGRB progenitor population.

 

ACS/SBC WFPC2 11175

 

UV Imaging to Determine the Location of Residual Star Formation in

Galaxies Recently Arrived on the Red Sequence

 

We have identified a sample of low-redshift {z = 0.04 - 0.10} galaxies

that are candidates for recent arrival on the red sequence. They have

red optical colors indicative of old stellar populations, but blue

UV-optical colors that could indicate the presence of a small quantity

of continuing or very recent star formation. However, their spectra lack

the emission lines that characterize star-forming galaxies. We propose

to use ACS/SBC to obtain high- resolution imaging of the UV flux in

these galaxies, in order to determine the spatial distribution of the

last episode of star formation. WFPC2 imaging will provide B, V, and I

photometry to measure the main stellar light distribution of the galaxy

for comparison with the UV imaging, as well as to measure color

gradients and the distribution of interstellar dust. This detailed

morphological information will allow us to investigate the hypothesis

that these galaxies have recently stopped forming stars and to compare

the observed distribution of the last star formation with predictions

for several different mechanisms that may quench star formation in

galaxies.

 

NIC2 11143

 

NICMOS imaging of submillimeter galaxies with CO and PAH redshifts

 

We propose to obtain F110W and F160W imaging of 10 z~2.4 submillimeter

galaxies {SMGs} whose optical redshifts have been confirmed by the

detection of millimeter CO and/or mid-infrared PAH emission. With the

4000A break falling within/between the two imaging filters, we will be

able to study these sources' spatially resolved stellar populations

{modulo extinction} in the rest-frame optical. SMGs' large luminosities

appear to be due largely to merger-triggered starbursts; high-resolution

NICMOS imaging will help us understand the stellar masses, mass ratios,

and other properties of the merger progenitors, valuable information in

the effort to model the mass assembly history of the universe.

 

WFPC2 11134

 

WFPC2 Tidal Tail Survey: Probing Star Cluster Formation on the Edge

 

The spectacular HST images of the interiors of merging galaxies such as

the Antennae and NGC 7252 have revealed rich and diverse populations of

star clusters created over the course of the interaction. Intriguingly,

our WFPC2 study of tidal tails in these and other interacting pairs has

shown that star cluster birth in the tails does not follow a similarly

straightforward evolution. In fact, cluster formation in these

relatively sparse environments is not guaranteed -- only one of six

tails in our initial study showed evidence for a significant population

of young star clusters. The tail environment thus offers the opportunity

to probe star cluster formation on the edge of the physical parameter

space {e.g., of stellar and gas mass, density, and pressure} that

permits it to occur. We propose to significantly extend our pilot sample

of optically bright, gas-rich tidal tails by a factor of 4 in number to

include a more diverse population of tails, encompassing major and minor

mergers, gas-rich and gas-poor tails, as well as early, late, and merged

interaction stages. With 21 orbits of HST WFPC2 imaging in the F606W and

F814W filters, we can identify, roughly age-date, and measure sizes of

star clusters to determine what physical parameters affect star cluster

formation. WFPC2 imaging has been used effectively in our initial study

of four mergers, and it will be possible in this program to reach

similar limits of Mv=-8.5 for each of 16 more tails. With the much

larger sample we expect to isolate which factors, such as merger stage,

HI content, and merger mass ratio, drive the formation of star clusters.

 

 

WFPC2 11130

 

AGNs with Intermediate-mass Black Holes: Testing the Black Hole-Bulge

Paradigm, Part II

 

The recent progress in the study of central black holes in galactic

nuclei has led to a general consensus that supermassive {10^6-10^9 solar

mass} black holes are closely connected with the formation and

evolutionary history of large galaxies, especially their bulge

component. Two outstanding issues, however, remain unresolved. Can

central black holes form in the absence of a bulge? And does the mass

function of central black holes extend below 10^6 solar masses?

Intermediate-mass black holes {<10^6 solar masses}, if they exist, may

offer important clues to the nature of the seeds of supermassive black

holes. Using the SDSS, our group has successfully uncovered a new

population of AGNs with intermediate-mass black holes that reside in

low-luminosity galaxies. However, very little is known about the

detailed morphologies or structural parameters of the host galaxies

themselves, including the crucial question of whether they have bulges

or not. Surprisingly, the majority of the targets of our Cycle 14 pilot

program have structural properties similar to dwarf elliptical galaxies.

The statistics from this initial study, however, are really too sparse

to reach definitive conclusions on this important new class of black

holes. We wish to extend this study to a larger sample, by using the

Snapshot mode to obtain WFPC2 F814W images from a parent sample of 175

AGNs with intermediate-mass black holes selected from our final SDSS

search. We are particularly keen to determine whether the hosts contain

bulges, and if so, how the fundamental plane properties of the host

depend on the mass of their central black holes. We will also

investigate the environment of this unique class of AGNs.

 

WFPC2 11128

 

Time Scales Of Bulge Formation In Nearby Galaxies

 

Traditionally, bulges are thought to fit well into galaxy formation

models of hierarchical merging. However, it is now becoming well

established that many bulges formed through internal, secular evolution

of the disk rather than through mergers. We call these objects

pseudobulges. Much is still unknown about pseudobulges, the most

pressing questions being: How, exactly, do they build up their mass? How

long does it take? And, how many exist? We are after an answer to these

questions. If pseudobulges form and evolve over longer periods than the

time between mergers, then a significant population of pseudobulges is

hard to explain within current galaxy formation theories. A pseudobulge

indicates that a galaxy has most likely not undergone a major merger

since the formation of the disk. The ages of pseudobulges give us an

estimate for the time scale of this quiescent evolution. We propose to

use 24 orbits of HST time to complete UBVIH imaging on a sample of 33

nearby galaxies that we have observed with Spitzer in the mid-IR. These

data will be used to measure spatially resolved stellar population

parameters {mean stellar age, metallicity, and star formation history};

comparing ages to star formation rates allows us to accurately constrain

the time scale of pseudobulge formation. Our sample of bulges includes

both pseudo- and classical bulges, and evenly samples barred and

unbarred galaxies. Most of our sample is imaged, 13 have complete UBVIH

coverage; we merely ask to complete missing observations so that we may

construct a uniform sample for studying bulge formation. We also wish to

compare the stellar population parameters to a variety of bulge and

global galaxy properties including star formation rates, dynamics,

internal bulge morphology, structure from bulge-disk decompositions, and

gas content. Much of this data set is already or is being assembled.

This will allow us to derive methods of pseudobulge identification that

can be used to accurately count pseudobulges in large surveys. Aside

from our own science goals, we will present this broad set of data to

the community. Thus, we waive proprietary periods for all observations.

 

 

 

WFPC2 11126

 

Resolving the Smallest Galaxies

 

An order of magnitude more dwarf galaxies are expected to inhabit the

Local Group, based on currently accepted galaxy formation models, than

have been observed. This discrepancy has been noted in environments

ranging from the field to rich clusters, with evidence emerging that

lower density regions contain fewer dwarfs per giant than higher density

regions, in further contrast to model predictions. One possible

explanation for this involves the effects of reionization on the forming

galaxies and naturally explains both the dearth of dwarf galaxies and

the apparent environmental dependence. However, before such theories can

be fully tested, we require a better understanding of the distribution

of dwarf galaxies. Currently, there is no complete census of the

faintest dwarf galaxies in any environment. The discovery of the

smallest and faintest dwarfs is hampered by the limitations in detecting

such faint and low surface brightness galaxies, and this is compounded

by the great difficulty in determining accurate distances to, or

ascertaining group membership for, such faint objects. The M81 group

provides a unique means for establishing membership for galaxies in a

low density region complete to magnitudes as faint as M_R ~ -7. With a

distance modulus of 27.8, the tip of the red giant branch {TRGB} appears

at I ~ 24, just within the reach of ground based surveys. We currently

have surveyed a 30 square degree region around M81 with the

CFHT/Megacam. From these images we have detected 15 new candidate dwarf

galaxies. We propose to use the HST with WFPC2 to image these 15

galaxies in F606W and F814W bands in order to construct a

color-magnitude diagram down to I = 25.5 from which to measure accurate

TRGB distances to these candidate galaxies and determine star formation

and metallicity histories. The overall project will provide a survey of

the dwarf galaxies in the M81 group environment with unprecedented

completeness to a limit of M_R < -7.

 

 

ACS/SBC 11109

 

Characterization of the UV absorption feature in asteroid {1} Ceres

 

We propose to obtain the UV spectrum of asteroid {1} Ceres from 120 nm

to 200 nm with ACS/SBC objective prism to characterize the broad and

deep absorption feature within this wavelength range as reported by ACS

observations of Ceres in 2003/04 {Li et al. 2006}. Our scientific goals

include, 1} to characterize the absorption band, 2} to determine the

origin of this spectral feature and constrain the surface composition of

Ceres, and 3} to understand the albedo and color features on Ceres. HST

is the only observatory currently capable of obtaining spectroscopy in

this wavelength range. This observation will help improve our knowledge

about this largest and oldest asteroid, and support the planning of the

upcoming NASA Discovery Program mission, Dawn, orbiting asteroids Vesta

and Ceres.

 

 

WFPC2 11103

 

A Snapshot Survey of The Most Massive Clusters of Galaxies

 

We propose the continuation of our highly successful SNAPshot survey of

a sample of 125 very X-ray luminous clusters in the redshift range

0.3-0.7. As demonstrated by the 25 snapshots obtained so far in Cycle14

and Cycle15 these systems frequently exhibit strong gravitational

lensing as well as spectacular examples of violent galaxy interactions.

The proposed observations will provide important constraints on the

cluster mass distributions, the physical nature of galaxy-galaxy and

galaxy-gas interactions in cluster cores, and a set of optically bright,

lensed galaxies for further 8-10m spectroscopy. All of our primary

science goals require only the detection and characterization of

high-surface-brightness features and are thus achievable even at the

reduced sensitivity of WFPC2. Because of their high redshift and thus

compact angular scale our target clusters are less adversely affected by

the smaller field of view of WFPC2 than more nearby systems.

Acknowledging the broad community interest in this sample we waive our

data rights for these observations. Due to a clerical error at STScI our

approved Cycle15 SNAP program was barred from execution for 3 months and

only 6 observations have been performed to date - reinstating this SNAP

at Cycle16 priority is of paramount importance to reach meaningful

statistics.

 

 

NIC2 11101

 

The Relevance of Mergers for Fueling AGNs: Answers from QSO Host

Galaxies

 

The majority of QSOs are known to reside in centers of galaxies that

look like ellipticals. Numerical simulations have shown that remnants of

galaxy mergers often closely resemble elliptical galaxies. However, it

is still strongly debated whether the majority of QSO host galaxies are

indeed the result of relatively recent mergers or whether they are

completely analogous to inactive ellipticals to which nothing

interesting has happened recently. To address this question, we recently

obtained deep HST ACS images for five QSO host galaxies that were

classified morphologically as ellipticals {GO-10421}. This pilot study

revealed striking signs of tidal interactions such as ripples, tidal

tails, and warped disks that were not detected in previous studies. Our

observations show that at least some "elliptical" QSO host galaxies are

the products of relatively recent merger events rather than old galaxies

formed at high redshift. However, the question remains whether the host

galaxies of classical QSOs are truly distinct from inactive ellipticals

and whether there is a connection between the merger events we detect

and the current nuclear activity. We must therefore place our results

into a larger statistical context. We are currently conducting an HST

archival study of inactive elliptical galaxies {AR-10941} to form a

control sample. We now propose to obtain deep HST/WFPC2 images of 13

QSOs whose host galaxies are classified as normal ellipticals. Comparing

the results for both samples will help us determine whether classical

QSOs reside in normal elliptical galaxies or not. Our recent pilot study

of five QSOs indicates that we can expect exciting results and deep

insights into the host galaxy morphology also for this larger sample of

QSOs. A statistically meaningful sample will help us determine the true

fraction of QSO hosts that suffered strong tidal interactions and thus,

whether a merger is indeed a requirement to trigger nuclear activity in

the most luminous AGNs. In addition to our primary science observations

with WFPC2, we will obtain NICMOS3 parallel observations with the

overall goal to select and characterize galaxy populations at high

redshifts. The imaging will be among the deepest NICMOS images: These

NICMOS images are expected to go to a limit a little over 1 magnitude

brighter than HUDF-NICMOS data, but over 13 widely separated fields,

with a total area about 1.5 times larger than HUDF-NICMOS. This

separation means that the survey will tend to average out effects of

cosmic variance. The NICMOS3 images will have sufficient resolution for

an initial characterization of galaxy morphologies, which is currently

one of the most active and promising areas in approaching the problem of

the formation of the first massive galaxies. The depth and area coverage

of our proposed NICMOS observations will also allow a careful study of

the mass function of galaxies at these redshifts. This provides a large

and unbiased sample, selected in terms of stellar mass and unaffected by

cosmic variance, to study the on-going star formation activity as a

function of mass {i.e. integrated star formation} at this very important

epoch.

 

 

NIC3 11082

 

NICMOS Imaging of GOODS: Probing the Evolution of the Earliest Massive

Galaxies, Galaxies Beyond Reionization, and the High Redshift Obscured

Universe

 

(uses ACS/SBC and WFPC2)

 

Deep near-infrared imaging provides the only avenue towards

understanding a host of astrophysical problems, including: finding

galaxies and AGN at z > 7, the evolution of the most massive galaxies,

the triggering of star formation in dusty galaxies, and revealing

properties of obscured AGN. As such, we propose to observe 60 selected

areas of the GOODS North and South fields with NICMOS Camera 3 in the

F160W band pointed at known massive M > 10^11 M_0 galaxies at z > 2

discovered through deep Spitzer imaging. The depth we will reach {26.5

AB at 5 sigma} in H_160 allows us to study the internal properties of

these galaxies, including their sizes and morphologies, and to

understand how scaling relations such as the Kormendy relationship

evolved. Although NIC3 is out of focus and under sampled, it is currently

our best opportunity to study these galaxies, while also sampling enough

area to perform a general NIR survey 1/3 the size of an ACS GOODS field.

These data will be a significant resource, invaluable for many other

science goals, including discovering high redshift galaxies at z > 7,

the evolution of galaxies onto the Hubble sequence, as well as examining

obscured AGN and dusty star formation at z > 1.5. The GOODS fields are

the natural location for HST to perform a deep NICMOS imaging program,

as extensive data from space and ground based observatories such as

Chandra, GALEX, Spitzer, NOAO, Keck, Subaru, VLT, JCMT, and the VLA are

currently available for these regions. Deep high-resolution

near-infrared observations are the one missing ingredient to this

survey, filling in an important gap to create the deepest, largest, and

most uniform data set for studying the faint and distant universe. The

importance of these images will increase with time as new facilities

come on line, most notably WFC3 and ALMA, and for the planning of future

JWST observations.

 

 

WFPC2 11035

 

Photometric Zero Points Closeout

 

Updated zero points will be obtained by observing NGC 2419 for which

extensive BVRI ground based observations exist, and the field in 47 Tuc

used for frequent monitoring of ACS. For NGC 2419 emphasis is given to

repeating observations obtained in earlier epochs, and to covering

filters near standard BVRI. For 47 Tuc emphasis is given to covering a

large set of broadband filters from F300W through F850LP to maximise

transformation capabilities between filters of WFPC2 and ACS.

 

WFPC2 10798

 

Dark Halos and Substructure from Arcs & Einstein Rings

 

The surface brightness distribution of extended gravitationally lensed

arcs and Einstein rings contains super-resolved information about the

lensed object, and, more excitingly, about the smooth and clumpy mass

distribution of the lens galaxies. The source and lens information can

non-parametrically be separated, resulting in a direct "gravitational

image" of the inner mass-distribution of cosmologically-distant galaxies

{Koopmans 2005; Koopmans et al. 2006 [astro-ph/0601628]}. With this goal

in mind, we propose deep HST ACS-F555W/F814W and NICMOS-F160W WFC

imaging of 20 new gravitational-lens systems with spatially resolved

lensed sources, of the 35 new lens systems discovered by the Sloan Lens

ACS Survey {Bolton et al. 2005} so far, 15 of which are being imaged in

Cycle-14. Each system has been selected from the SDSS and confirmed in

two time- efficient HST-ACS snapshot programs {cycle 13&14}.

High-fidelity multi-color HST images are required {not delivered by the

420s snapshots} to isolate these lensed images {properly cleaned,

dithered and extinction-corrected} from the lens galaxy surface

brightness distribution, and apply our "gravitational maging" technique.

Our sample of 35 early-type lens galaxies to date is by far the largest,

still growing, and most uniformly selected. This minimizes selection

biases and small-number statistics, compared to smaller, often

serendipitously discovered, samples. Moreover, using the WFC provides

information on the field around the lens, higher S/N and a better

understood PSF, compared with the HRC, and one retains high spatial

resolution through drizzling. The sample of galaxy mass distributions -

determined through this method from the arcs and Einstein ring HST

images - will be studied to: {i} measure the smooth mass distribution of

the lens galaxies {dark and luminous mass are separated using the HST

images and the stellar M/L values derived from a joint stellar-dynamical

analysis of each system}; {ii} quantify statistically and individually

the incidence of mass-substructure {with or without obvious luminous

counter- parts such as dwarf galaxies}. Since dark-matter substructure

could be more prevalent at higher redshift, both results provide a

direct test of this prediction of the CDM hierarchical

structure-formation model.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS:

11076 - GSacq(1,3,1) failed, Scan Step Limit exceeded on FGS 1

           GSACQ(1,3,1) at 326/06:01:11 failed due to scan step limit exceeded on

           FGS 1 while vehicle was LOS. No ESB messages were received, #44 commands

           did not update from their values prior to LOS.

 

 

11077 - REacq(1,2,2) failed to RGA Hold

           At AOS at 326/12:16:45, REacq(1,2,2) scheduled at 11:46:45 had failed to

           RGA hold due to receiving QF1STOPF on FGA 1. OBAD2 had RSS value of 2.44

           arcseconds.

 

11078 - GSacq(1,2,1) failed, Search Radius Limit exceeded on FGS 1

           GSacq(1,2,1) at 327/08:13:07 failed at 08:18:58 with search radius limit

           exceeded on FGS 1. One 486 status buffer "A05" message (FGS Coarse Track

           failed- search Radius Limit exceeded) was received. OBAD prior to GSACQ

           had RSS error of 14.39 arcseconds.

 

11079 - GSacq(1,3,1) not attempted, Open Loop Timer expired

           GSACQ(1,3,1) at 330/04:14:05 failed while vehicle was LOS, was not

           attempted due to open loop timer expiration. 27 ESB messages were

           received beginning at 04:11:31, see attached dump file.

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                        SCHEDULED      SUCCESSFUL 

FGS GSacq                 43                  40     

FGS REacq                 26                  25    

OBAD with Maneuver 134                134                         

 

SIGNIFICANT EVENTS: (None)