HUBBLE
SPACE TELESCOPE - Continuing to collect World Class Science
DAILY
REPORT # 4502
PERIOD
COVERED: UT December 7, 2007 (DOY 341)
OBSERVATIONS
SCHEDULED
WFPC2
10787
Modes
of Star Formation and Nuclear Activity in an Early Universe
Laboratory
Nearby
compact galaxy groups are uniquely suited to exploring the
mechanisms
of star formation amid repeated and ongoing gravitational
encounters,
conditions similar to those of the high redshift universe.
These
dense groups host a variety of modes of star formation, and they
enable
fresh insights into the role of gas in galaxy evolution. With
Spitzer
mid-IR observations in hand, we have begun to obtain high
quality,
multi-wavelength data for a well- defined sample of 12 nearby
{<4500km/s}
compact groups covering the full range of evolutionary
stages.
Here we propose to obtain sensitive BVI images with the ACS/WFC,
deep
enough to reach the turnover of the globular cluster luminosity
function,
and WFPC2 U-band and ACS H-alpha images of Spitzer-identified
regions
hosting the most recent star formation. In total, we expect to
detect
over 1000 young star clusters forming inside and outside
galaxies,
more than 4000 old globular clusters in >40 giant galaxies
{including
16 early-type galaxies}, over 20 tidal features,
approximately
15 AGNs, and intragroup gas in most of the 12 groups.
Combining
the proposed ACS images with Chandra observations, UV GALEX
observations,
ground-based H-alpha imaging, and HI data, we will conduct
a detailed
study of stellar nurseries, dust, gas kinematics, and AGN.
NIC1
10889
The
Nature of the Halos and Thick Disks of Spiral Galaxies
We
propose to resolve the extra-planar stellar populations of the thick
disks
and halos of seven nearby, massive, edge-on galaxies using ACS,
NICMOS,
and WFPC2 in parallel. These observations will provide accurate
star
counts and color-magnitude diagrams 1.5 magnitudes below the tip of
the
Red Giant Branch sampled along the two principal axes and one
intermediate
axis of each galaxy. We will measure the metallicity
distribution
functions and stellar density profiles from star counts
down
to very low average surface brightnesses, equivalent to ~32 V-mag
per
square arcsec. These observations will provide the definitive HST
study
of extra-planar stellar populations of spiral galaxies. Our
targets
cover a range in galaxy mass, luminosity, and morphology and as
function
of these galaxy properties we will provide: - The first
systematic
study of the radial and isophotal shapes of the diffuse
stellar
halos of spiral galaxies - The most detailed comparative study
to
date of thick disk morphologies and stellar populations - A
comprehensive
analysis of halo and thick disk metallicity distributions
as
a function of galaxy type and position within the galaxy. - A
sensitive
search for tidal streams - The first opportunity to directly
relate
globular cluster systems to their field stellar population We
will
use these fossil records of the galaxy assembly process preserved
in
the old stellar populations to test halo and thick disk formation
models
within the hierarchical galaxy formation scheme. We will test
LambdaCDM
predictions on sub-galactic scales, where it is difficult to
test
using CMB and galaxy redshift surveys, and where it faces its most
serious
difficulties.
NIC1/NIC2/NIC3
8794
NICMOS Post-SAA calibration - CR Persistence Part 5
A
new procedure proposed to alleviate the CR-persistence problem of
NICMOS.
Dark frames will be obtained immediately upon exiting the SAA
contour
23, and every time a NICMOS exposure is scheduled within 50
minutes
of coming out of the SAA. The darks will be obtained in parallel
in
all three NICMOS Cameras. The POST-SAA darks will be non- standard
reference
files available to users with a USEAFTER date/time mark. The
keyword
'USEAFTER=date/time' will also be added to the header of each
POST-SAA
DARK frame. The keyword must be populated with the time, in
addition
to the date, because HST crosses the SAA ~8 times per day so
each
POST-SAA DARK will need to have the appropriate time specified, for
users
to identify the ones they need. Both the raw and processed images
will
be archived as POST-SAA DARKs. Generally we expect that all NICMOS
science/calibration
observations started within 50 minutes of leaving an
SAA
will need such maps to remove the CR persistence from the science
images.
Each observation will need its own CRMAP, as different SAA
passages
leave different imprints on the NICMOS detectors.
NIC2
11157
NICMOS
Imaging Survey of Dusty Debris Around Nearby Stars Across the
Stellar
Mass Spectrum
Association
of planetary systems with dusty debris disks is now quite
secure,
and advances in our understanding of planet formation and
evolution
can be achieved by the identification and characterization of
an
ensemble of debris disks orbiting a range of central stars with
different
masses and ages. Imaging debris disks in starlight scattered
by
dust grains remains technically challenging so that only about a
dozen
systems have thus far been imaged. A further advance in this field
needs
an increased number of imaged debris disks. However, the technical
challenge of such
observations, even with the superb combination of HST
and
NICMOS, requires the best targets. Recent HST imaging investigations
of
debris disks were sample-limited not limited by the technology used.
We
performed a search for debris disks from a IRAS/Hipparcos cross
correlation
which involved an exhaustive background contamination check
to
weed out false excess stars. Out of ~140 identified debris disks, we
selected
22 best targets in terms of dust optical depth and disk angular
size.
Our target sample represents the best currently available target
set
in terms of both disk brightness and resolvability. For example, our
targets
have higher dust optical depth, in general, than newly
identified
Spitzer disks. Also, our targets cover a wider range of
central
star ages and masses than previous debris disk surveys. This
will
help us to investigate planetary system formation and evolution
across
the stellar mass spectrum. The technical feasibility of this
program
in two-gyro mode guiding has been proven with on- orbit
calibration
and science observations during HST cycles 13, 14, and 15.
WFPC2
11084
Probing
the Least Luminous Galaxies in the Local Universe
We
propose to obtain deep color-magnitude data of eight new Local Group
galaxies
which we recently discovered: Andromeda XI, Andromeda XII, and
Andromeda
XIII {satellites of M31}; Canes Venatici I, Canes Venatici II,
Hercules,
and Leo IV {satellites of the Milky Way}; and Leo T, a new
"free-floating"
Local Group dwarf spheroidal with evidence for recent
star
formation and associated H I gas. These represent the least
luminous
galaxies known at *any* redshift, and are the only accessible
laboratories
for studying this extreme regime of galaxy formation. With
deep
WFPC-2 F606W and F814W pointings at their centers, we will
determine
whether these objects contain single or multiple age stellar
populations,
as well as whether these objects display a range of
metallicities.
WFPC2
11130
AGNs
with Intermediate-mass Black Holes: Testing the Black Hole-Bulge
Paradigm,
Part II
The
recent progress in the study of central black holes in galactic
nuclei
has led to a general consensus that supermassive {10^6-10^9 solar
mass}
black holes are closely connected with the formation and
evolutionary
history of large galaxies, especially their bulge
component.
Two outstanding issues, however, remain unresolved. Can
central
black holes form in the absence of a bulge? And does the mass
function
of central black holes extend below 10^6 solar masses?
Intermediate-mass
black holes {<10^6 solar masses}, if they exist, may
offer
important clues to the nature of the seeds of supermassive black
holes.
Using the SDSS, our group has successfully uncovered a new
population
of AGNs with intermediate-mass black holes that reside in
low-luminosity
galaxies. However, very little is known about the
detailed
morphologies or structural parameters of the host galaxies
themselves,
including the crucial question of whether they have bulges
or
not. Surprisingly, the majority of the targets of our Cycle 14 pilot
program
have structural properties similar to dwarf elliptical galaxies.
The
statistics from this initial study, however, are really too sparse
to
reach definitive conclusions on this important new class of black
holes.
We wish to extend this study to a larger sample, by using the
Snapshot
mode to obtain WFPC2 F814W images from a parent sample of 175
AGNs
with intermediate-mass black holes selected from our final SDSS
search.
We are particularly keen to determine whether the hosts contain
bulges,
and if so, how the fundamental plane properties of the host
depend
on the mass of their central black holes. We will also
investigate
the environment of this unique class of AGNs.
WFPC2
11178
Probing
Solar System History with Orbits, Masses, and Colors of
Transneptunian
Binaries
The
recent discovery of numerous transneptunian binaries {TNBs} opens a
window
into dynamical conditions in the protoplanetary disk where they
formed
as well as the history of subsequent events which sculpted the
outer
Solar System and emplaced them onto their present day heliocentric
orbits.
To date, at least 47 TNBs have been discovered, but only about a
dozen
have had their mutual orbits and separate colors determined,
frustrating
their use to investigate numerous important scientific
questions.
The current shortage of data especially cripples scientific
investigations
requiring statistical comparisons among the ensemble
characteristics.
We propose to obtain sufficient astrometry and
photometry
of 23 TNBs to compute their mutual orbits and system masses
and
to determine separate primary and secondary colors, roughly tripling
the
sample for which this information is known, as well as extending it
to
include systems of two near-equal size bodies. To make the most
efficient
possible use of HST, we will use a
optimally
schedule our observations.
WFPC2
11289
SL2S:
The Strong Lensing Legacy Survey
Recent
systematic surveys of strong galaxy-galaxy lenses {CLASS, SLACS,
GOODS,
etc.} are producing spectacular results for galaxy masses roughly
below
a transition mass M~10^13 Mo. The observed lens properties and
their
evolution up to z~0.2, consistent with numerical simulations, can
be
described by isothermal elliptical potentials. In contrast, modeling
of
giant arcs in X-ray luminous clusters {halo masses M >~10^13 Mo}
favors
NFW mass profiles, suggesting that dark matter halos are not
significantly
affected by baryon cooling. Until recently, lensing
surveys
were neither deep nor extended enough to probe the intermediate
mass
density regime, which is fundamental for understanding the assembly
of
structures. The CFHT Legacy Survey now covers 125 square degrees, and
thus
offers a large reservoir of strong lenses probing a large range of
mass
densities up to z~1. We have extracted a list of 150 strong lenses
using
the most recent CFHTLS data release via automated procedures.
Following
our first SNAPSHOT proposal in cycle 15, we propose to
continue
the Hubble follow-up targeting a larger list of 130 lensing
candidates.
These are intermediate mass range candidates {between
galaxies
and clusters} that are selected in the redshift range of 0.2-1
with
no a priori X-ray selection. The HST resolution is necessary for
confirming
the lensing candidates, accurate modeling of the lenses, and
probing
the total mass concentration in galaxy groups up to z~1 with the
largest
unbiased sample available to date.
FLIGHT
OPERATIONS SUMMARY:
Significant
Spacecraft Anomalies: (The following are preliminary reports
of
potential non-nominal performance that will be investigated.)
HSTARS:
(None)
COMPLETED
OPS REQUEST: (None)
COMPLETED
OPS NOTES: (None)
SCHEDULED
SUCCESSFUL
FGS
GSacq
08
08
FGS
REacq
07
07
OBAD
with Maneuver
30
30
SIGNIFICANT
EVENTS: (None)