HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT       # 4517

 

PERIOD COVERED: UT Dec 31 - Jan 01, 2007 (DOY 365) - 2008 (DOY 001)

 

OBSERVATIONS SCHEDULED

 

ACS/SBC 11145

 

Probing the Planet Forming Region of T Tauri Stars in Chamaeleon

 

By studying the inner, planet-forming regions of circumstellar disks

around low-mass pre- main sequence stars we can refine theories of giant

planet formation and develop timescales for the evolution of disks and

their planets. Spitzer infrared observations of T Tauri stars in the

Chamaeleon star-forming region have given us an unprecedented look at

dust evolution in young objects. However, despite this ground breaking

progress in studying the dust in young disks, the gas properties of the

inner disk remain essentially unknown. Using ACS on HST, we propose to

measure the H_2 emission originating in the innermost disk regions of

classical T Tauri stars in different stages of evolution with the

objective of revealing the timescales of gas dissipation and its

relationship to dust evolution. This proposal is part of a comprehensive

effort with approved programs on Spitzer, Gemini, and Magellan that aim

to characterize the state of gas and dust in disks where planets may

already have formed.

 

WFPC2 10583

 

Resolving the LMC Microlensing Puzzle: Where Are the Lensing Objects ?

 

We are requesting 32 HST orbits to help ascertain the nature of the

population that gives rise to the observed set of microlensing events

towards the LMC. The SuperMACHO project is an ongoing ground-based

survey on the CTIO 4m that has demonstrated the ability to detect LMC

microlensing events in real-time via frame subtraction. The improvement

in angular resolution and photometric accuracy available from HST will

allow us to 1} confirm that the detected flux excursions arise from LMC

source stars rather than extended objects {such as for background

supernovae or AGN}, and 2} obtain reliable baseline flux measurements

for the objects in their unlensed state. The latter measurement is

important to resolve degeneracies between the event timescale and

baseline flux, which will yield a tighter constraint on the microlensing

optical depth.

 

WFPC2 11024

 

WFPC2 CYCLE 15 INTERNAL MONITOR

 

This calibration proposal is the Cycle 15 routine internal monitor for

WFPC2, to be run weekly to monitor the health of the cameras. A variety

of internal exposures are obtained in order to provide a monitor of the

integrity of the CCD camera electronics in both bays {both gain 7 and

gain 15 -- to test stability of gains and bias levels}, a test for

quantum efficiency in the CCDs, and a monitor for possible buildup of

contaminants on the CCD windows. These also provide raw data for

generating annual super-bias reference files for the calibration

pipeline.

 

NIC1/NIC2/NIC3 8794

 

NICMOS Post-SAA calibration - CR Persistence Part 5

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non- standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science

images. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC3 11195

 

Morphologies of the Most Extreme High-Redshift Mid-IR-luminous Galaxies

II: The `Bump' Sources

 

The formative phase of some of the most massive galaxies may be

extremely luminous, characterized by intense star- and AGN-formation.

Till now, few such galaxies have been unambiguously identified at high

redshift, and thus far we have been restricted to studying the

low-redshift ultraluminous infrared galaxies as possible analogs. We

have recently discovered a sample of objects which may indeed represent

this early phase in galaxy formation, and are undertaking an extensive

multiwavelength study of this population. These objects are optically

extremely faint {R>26} but nevertheless bright at mid-infrared

wavelengths {F[24um] > 0.5 mJy}. Mid-infrared spectroscopy with

Spitzer/IRS reveals that they have redshifts z~2, implying luminosities

~1E13 Lsun. Their mid-IR SEDs fall into two broad, perhaps overlapping,

categories. Sources with brighter F[24um] exhibit power-law SEDs and SiO

absorption features in their mid-IR spectra characteristic of AGN,

whereas those with fainter F[24um] show a "bump" characteristic of the

redshifted 1.6um peak from a stellar population, and PAH emission

characteristic of starformation. We have begun obtaining HST images of

the brighter sources in Cycle 15 to obtain identifications and determine

kpc-scale morphologies for these galaxies. Here, we aim to target the

second class {the "bump" sources} with the goal of determining if these

constitute morphologically different objects, or simply a "low-AGN"

state of the brighter class. The proposed observations will help us

determine whether these objects are merging systems, massive obscured

starbursts {with obscuration on kpc scales!} or very reddened {locally

obscured} AGN hosted by intrinsically low-luminosity galaxies.

 

WFPC2 10890

 

Morphologies of the Most Extreme High-Redshift Mid-IR-Luminous Galaxies

 

The formative phase of the most massive galaxies may be extremely

luminous, characterized by intense star- and AGN-formation. Till now,

few such galaxies have been unambiguously identified at high redshift,

restricting us to the study of low-redshift ultraluminous infrared

galaxies as possible analogs. We have recently discovered a sample of

objects which may indeed represent this early phase in galaxy formation,

and are undertaking an extensive multiwavelength study of this

population. These objects are bright at mid-IR wavelengths

{F[24um]>0.8mJy}, but deep ground based imaging suggests extremely faint

{and in some cases extended} optical counterparts {R~24-27}. Deep K-band

images show barely resolved galaxies. Mid-infrared spectroscopy with

Spitzer/IRS reveals that they have redshifts z ~ 2-2.5, suggesting

bolometric luminosities ~10^{13-14}Lsun! We propose to obtain deep ACS

F814W and NIC2 F160W images of these sources and their environs in order

to determine kpc-scale morphologies and surface photometry for these

galaxies. The proposed observations will help us determine whether these

extreme objects are merging systems, massive obscured starbursts {with

obscuration on kpc scales!} or very reddened {locally obscured} AGN

hosted by intrinsically low-luminosity galaxies.

 

WFPC2 11070

 

WFPC2 CYCLE 15 Standard Darks - part II

 

This dark calibration program obtains dark frames every week in order to

provide data for the ongoing calibration of the CCD dark current rate,

and to monitor and characterize the evolution of hot pixels. Over an

extended period these data will also provide a monitor of radiation

damage to the CCDs.

 

WFPC2 11179

 

Dynamics of Clumpy Supersonic Flows in Stellar Jets and in the

Laboratory

 

We propose to reobserve three stellar jets in order to quantify how

rapidly clumps in these flows accelerate and decelerate, and to compare

the results with ongoing numerical simulations and laboratory

experiments. Each jet has been imaged twice before with HST, and precise

proper motions have been measured for all emitting knots in the jets.

Images from the first two epochs show clear differential motions between

adjacent clumps, as well as shear, and possibly fragmentation. The

proposed third epoch will enable us to measure the first ever

accelerations in jets, quantify errors in existing proper motion

measurements, and observe in real time how fluid instabilities develop

in supersonic flows. The new images will make it possible to compare the

behavior of astrophysical flows directly with numerical simulations and

with laboratory experiments of bow shocks and clumpy flows in progress

at the Omega laser facility.

 

WFPC2 11327

 

Red leaks

 

The aim of this program is to measure the red leaks in the 8 WFPC2 UV???

filters (F122M, F300W, F255W, F218W, F185W, F170W, F160BW, F122M). We

will use red crossing filters to isolate and directly measure the leaks.

No observations of this kind have ever been performed with WFPC2 to

check the red leaks in the UV filters, most of them being extensively

used by GO/GTO programs. A previous calibration program has only imaged

spectrophotometric standard stars with UV filters (no filter crossing)

thus the red leak is hard to measure using this data. The throughput

curves for some of the UV filters (F300W, F255W, F218W, F185W) in

synphot have incomplete information, some of them have gaps in the

measurements as wide as 3000A.

 

FGS 11211

 

An Astrometric Calibration of Population II Distance Indicators

 

In 2002 HST produced a highly precise parallax for RR Lyrae. That

measurement resulted in an absolute magnitude, M{V}= 0.61+/-0.11, a

useful result, judged by the over ten refereed citations each year

since. It is, however, unsatisfactory to have the direct,

parallax-based, distance scale of Population II variables based on a

single star. We propose, therefore, to obtain the parallaxes of four

additional RR Lyrae stars and two Population II Cepheids, or W Vir

stars. The Population II Cepheids lie with the RR Lyrae stars on a

common K-band Period-Luminosity relation. Using these parallaxes to

inform that relationship, we anticipate a zero-point error of 0.04

magnitude. This result should greatly strengthen confidence in the

Population II distance scale and increase our understanding of RR Lyrae

star and Pop II Cepheid astrophysics.

 

FGS 11213

 

Distances to Eclipsing M Dwarf Binaries

 

We propose HST FGS observations to measure accurate distances of 5

nearby M dwarf eclipsing binary systems, from which model-independent

luminosities can be calculated. These objects have either poor or no

existing parallax measurements. FGS parallax determinations for these

systems, with their existing dynamic masses determined to better than

0.5%, would serve as model-independent anchor points for the low-mass

end of the mass-luminosity diagram.

 

NIC1/NIC2/NIC3 8794

 

NICMOS Post-SAA calibration - CR Persistence Part 5

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non- standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science

images. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC2 11166

 

The Mass-dependent Evolution of the Black Hole-Bulge Relations

 

In the local universe, the masses of giant black holes are correlated

with the luminosities, masses and velocity dispersions of their host

galaxy bulges. This indicates a surprisingly close connection between

the evolution of galactic nuclei (on parsec scales) and of stars on kpc

scales. A key observational test of proposed explanations for these

correlations is to measure how they have evolved over cosmic time. Our

ACS imaging of 20 Seyfert 1 galaxies at z=0.37 showed them to have

smaller bulges (by a factor of 3) for a given central black hole mass

than is found in galaxies in the present-day universe. However, since

all our sample galaxies had black hole masses in the range 10^8.0--8.5

Msun, we could only measure the OFFSET in black hole mass to bulge

luminosity ratios from the present epoch. By extending this study to

black hole masses another factor of 10 lower, we propose to determine

the full CORRELATION of black hole mass with host galaxy properties at a

lookback time of 4 Gyrs and to test mass-dependency of the evolution. We

have selected 14 Seyfert galaxies from SDSS DR5 whose narrow Hbeta

emission lines (and estimated nuclear luminosities) imply that they have

black hole masses around 10^7 Msuns. We will soon complete our Keck

spectroscopic measures of their bulge velocity dispersions. We need a

1-orbit NICMOS image of each galaxy to separate its nonstellar

luminosity from its bulge and disk. This will allow us to make the first

determination of the full black hole/bulge relations at z=0.37 (e.g. M-L

and M-sigma), as well as a test of whether active galaxies obey the

Fundamental Plane relation at that epoch.

 

NIC3 11195

 

Morphologies of the Most Extreme High-Redshift Mid-IR-luminous Galaxies

II: The `Bump' Sources The formative phase of some of the most massive

galaxies may be extremely luminous, characterized by intense star- and

AGN-formation. Till now, few such galaxies have been unambiguously

identified at high redshift, and thus far we have been restricted to

studying the low-redshift ultraluminous infrared galaxies as possible

analogs. We have recently discovered a sample of objects which may

indeed represent this early phase in galaxy formation, and are

undertaking an extensive multiwavelength study of this population. These

objects are optically extremely faint {R>26} but nevertheless bright at

mid-infrared wavelengths {F[24um] > 0.5 mJy}. Mid-infrared spectroscopy

with Spitzer/IRS reveals that they have redshifts z~2, implying

luminosities ~1E13 Lsun. Their mid-IR SEDs fall into two broad, perhaps

overlapping, categories. Sources with brighter F[24um] exhibit power-law

SEDs and SiO absorption features in their mid-IR spectra characteristic

of AGN, whereas those with fainter F[24um] show a "bump" characteristic

of the redshifted 1.6um peak from a stellar population, and PAH emission

characteristic of starformation. We have begun obtaining HST images of

the brighter sources in Cycle 15 to obtain identifications and determine

kpc-scale morphologies for these galaxies. Here, we aim to target the

second class {the "bump" sources} with the goal of determining if these

constitute morphologically different objects, or simply a "low-AGN"

state of the brighter class. The proposed observations will help us

determine whether these objects are merging systems, massive obscured

starbursts {with obscuration on kpc scales!} or very reddened {locally

obscured} AGN hosted by intrinsically low-luminosity galaxies.

 

WFPC2 11027

 

Visible Earth Flats

 

This proposal monitors flatfield stability. This proposal obtains

sequences of Earth streak flats to construct high quality flat fields

for the WFPC2 filter set. These flat fields will allow mapping of the

OTA illumination pattern and will be used in conjunction with previous

internal and external flats to generate new pipeline superflats. These

Earth flats will complement the Earth flat data obtained during cycles

4-14.

 

WFPC2 11029

 

WFPC2 CYCLE 15 Intflat Linearity Check and Filter Rotation Anomaly

Monitor

 

Intflat observations will be taken to provide a linearity check: the

linearity test consists of a series of intflats in F555W, in each gain

and each shutter. A combination of intflats, visflats, and earthflats

will be used to check the repeatability of filter wheel motions.

{Intflat sequences tied to decons, visits 1-18 in prop 10363, have been

moved to the cycle 15 decon proposal xxxx for easier scheduling.} Note:

long-exposure WFPC2 intflats must be scheduled during ACS anneals to

prevent stray light from the WFPC2 lamps from contaminating long ACS

external exposures.

 

WFPC2 11202

 

The Structure of Early-type Galaxies: 0.1-100 Effective Radii

 

The structure, formation and evolution of early-type galaxies is still

largely an open problem in cosmology: how does the Universe evolve from

large linear scales dominated by dark matter to the highly non-linear

scales of galaxies, where baryons and dark matter both play important,

interacting, roles? To understand the complex physical processes

involved in their formation scenario, and why they have the tight

scaling relations that we observe today {e.g. the Fundamental Plane}, it

is critically important not only to understand their stellar structure,

but also their dark-matter distribution from the smallest to the largest

scales. Over the last three years the SLACS collaboration has developed

a toolbox to tackle these issues in a unique and encompassing way by

combining new non-parametric strong lensing techniques, stellar

dynamics, and most recently weak gravitational lensing, with

high-quality Hubble Space Telescope imaging and VLT/Keck spectroscopic

data of early-type lens systems. This allows us to break degeneracies

that are inherent to each of these techniques separately and probe the

mass structure of early-type galaxies from 0.1 to 100 effective radii.

The large dynamic range to which lensing is sensitive allows us both to

probe the clumpy substructure of these galaxies, as well as their

low-density outer haloes. These methods have convincingly been

demonstrated, by our team, using smaller pilot-samples of SLACS lens

systems with HST data. In this proposal, we request observing time with

WFPC2 and NICMOS to observe 53 strong lens systems from SLACS, to obtain

complete multi-color imaging for each system. This would bring the total

number of SLACS lens systems to 87 with completed HST imaging and

effectively doubles the known number of galaxy-scale strong lenses. The

deep HST images enable us to fully exploit our new techniques, beat down

low-number statistics, and probe the structure and evolution of

early-type galaxies, not only with a uniform data-set an order of

magnitude larger than what is available now, but also with a fully

coherent and self-consistent methodological approach!

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                       SCHEDULED      SUCCESSFUL

FGS GSacq               14                 14               

FGS REacq               15                 15      

OBAD with Maneuver 58                 58               

 

SIGNIFICANT EVENTS: (None)