HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT      # 4528

 

PERIOD COVERED: UT January 016, 2008 (DOY 016)

 

OBSERVATIONS SCHEDULED

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA calibration - CR Persistence Part 6

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non-standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science i

mages. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC3 11107

 

Imaging of Local Lyman Break Galaxy Analogs: New Clues to Galaxy

Formation in the Early Universe

 

We have used the ultraviolet all-sky imaging survey currently being

conducted by the Galaxy Evolution Explorer {GALEX} to identify for the

first time a rare population of low-redshift starbursts with properties

remarkably similar to high-redshift Lyman Break Galaxies {LBGs}. These

"compact UV luminous galaxies" {UVLGs} resemble LBGs in terms of size,

SFR, surface brightness, mass, metallicity, kinematics, dust, and color.

The UVLG sample offers the unique opportunity of investigating some very

important properties of LBGs that have remained virtually inaccessible

at high redshift: their morphology and the mechanism that drives their

star formation. Therefore, in Cycle 15 we have imaged 7 UVLGs using ACS

in order to 1} characterize their morphology and look for signs of

interactions and mergers, and 2} probe their star formation histories

over a variety of timescales. The images show a striking trend of small-

scale mergers turning large amounts of gas into vigorous starbursts {a

process referred to as dissipational or "wet" merging}. Here, we propose

to complete our sample of 31 LBG analogs using the ACS/SBC F150LP {FUV}

and WFPC2 F606W {R} filters in order to create a statistical sample to

study the mechanism that triggers star formation in UVLGs and its

implications for the nature of LBGs. Specifically, we will 1} study the

trend between galaxy merging and SFR in UVLGs, 2} artificially redshift

the FUV images to z=1-4 and compare morphologies with those in similarly

sized samples of LBGs at the same rest-frame wavelengths in e.g. GOODS,

UDF, and COSMOS, 3} determine the presence and morphology of significant

stellar mass in "pre- burst" stars, and 4} study their immediate

environment. Together with our Spitzer {IRAC+MIPS}, GALEX, SDSS and

radio data, the HST observations will form a unique union of data that

may for the first time shed light on how the earliest major episodes of

star formation in high redshift galaxies came about. This proposal was

adapted from an ACS HRC+WFC proposal to meet the new Cycle 16 observing

constraints, and can be carried out using the ACS/SBC and WFPC2 without

compromising our original science goals.

 

WFPC2 11125

 

The Dynamical Evolution of Globular Clusters

 

Globular clusters evolve through dynamical interactions, with primordial

binaries extending the time until core collapse by up to an order of

magnitude, depending on the initial binary fraction. These dynamical

interactions plus mass segregation causes the binary fraction to rise in

the core but fall at larger radii. We hope to eventually test these

broad predictions by comparing them to the binary properties for

globular clusters at different states of evolution, defined by the ratio

of their age to the dynamical relaxation time at the half-light radius.

The most important unknown aspects in the modeling process are the

initial conditions of binaries in the cluster. Here we propose to

determine the initial binary fraction as a function of radius by

studying three of the dynamically youngest globular clusters {NGC 5053,

NGC 5466, and NGC 5897}. The presence of binaries thickens the Main

Sequence in a color-magnitude diagram, which can be detected with deep

multicolor images.

 

WFPC2/NIC3/ACS/SBC 11144

 

Building on the Significant NICMOS Investment in GOODS: A Bright,

Wide-Area Search for z>=7 Galaxies

 

One of the most exciting frontiers in observational cosmology has been

to trace the buildup and evolution of galaxies from very early times.

While hierarchical theory teaches us that the star formation rate in

galaxies likely starts out small and builds up gradually, only recently

has it been possible to see evidence for this observationally through

the evolution of the LF from z~6 to z~3. Establishing that this build up

occurs from even earlier times {z~7-8} has been difficult, however, due

to the small size of current high-redshift z~7-8 samples -- now

numbering in the range of ~4-10 sources. Expanding the size of these

samples is absolutely essential, if we are to push current studies of

galaxy buildup back to even earlier times. Fortunately, we should soon

be able to do so, thanks to ~50 arcmin**2 of deep {26.9 AB mag at 5

sigma} NICMOS 1.6 micron data that will be available over the two ACS

GOODS fields as a result of one recent 180- orbit ACS backup program and

a smaller program. These data will nearly triple the deep near-IR

imaging currently available and represent a significant resource for

finding and characterizing the brightest high-redshift sources -- since

high-redshift candidates can be easily identified in these data from

their red z-H colours. Unfortunately, the red z-H colours of these

candidates are not sufficient to determine that these sources are at

z>=7, and it is important also to have deep photometry at 1.1 microns.

To obtain this crucial information, we propose to follow up each of

these z-H dropouts with NICMOS at 1.1 microns to determine which are at

high redshift and thus significantly expand our sample of luminous, z>=7

galaxies. Since preliminary studies indicate that these candidates occur

in only 30% of the NIC3 fields, our follow-up strategy is ~3 times as

efficient as without this preselection and 9 times as efficient as a

search in a field with no pre-existing data. In total, we expect to

identify ~8 luminous z-dropouts and possibly ~2 z~10 J-dropouts as a

result of this program, more than tripling the number currently known.

The increased sample sizes are important if we are to solidify current

conclusions about galaxy buildup and the evolution of the LF from z~8.

In addition to the high redshift science, these deep 1.1 micron data

would have significant value for many diverse endeavors, including {1}

improving our constraints on the stellar mass density at z~7-10 and {2}

doubling the number of galaxies at z~6 for which we can estimate dust

obscuration.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST:

OR #18172-1 – Clear ACS SBC Event Flag #2 for OBS #11162

 

COMPLETED OPS NOTES: (None)

 

                       SCHEDULED      SUCCESSFUL 

FGS GSacq               07                 07                  

FGS REacq               06                 06                  

OBAD with Maneuver 18                18               

 

SIGNIFICANT EVENTS: (None)