HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT       # 4533

 

PERIOD COVERED: UT January 24, 2007 (DOY 024)

 

OBSERVATIONS SCHEDULED

 

FGS 11211

 

An Astrometric Calibration of Population II Distance Indicators

 

In 2002 HST produced a highly precise parallax for RR Lyrae. That

measurement resulted in an absolute magnitude, M{V}= 0.61+/-0.11, a

useful result, judged by the over ten refereed citations each year

since. It is, however, unsatisfactory to have the direct,

parallax-based, distance scale of Population II variables based on a

single star. We propose, therefore, to obtain the parallaxes of four

additional RR Lyrae stars and two Population II Cepheids, or W Vir

stars. The Population II Cepheids lie with the RR Lyrae stars on a

common K-band Period-Luminosity relation. Using these parallaxes to

inform that relationship, we anticipate a zero-point error of 0.04

magnitude. This result should greatly strengthen confidence in the

Population II distance scale and increase our understanding of RR Lyrae

star and Pop II Cepheid astrophysics.

 

NIC1/NIC2 10889

 

The Nature of the Halos and Thick Disks of Spiral Galaxies

 

We propose to resolve the extra-planar stellar populations of the thick

disks and halos of seven nearby, massive, edge-on galaxies using ACS,

NICMOS, and WFPC2 in parallel. These observations will provide accurate

star counts and color-magnitude diagrams 1.5 magnitudes below the tip of

the Red Giant Branch sampled along the two principal axes and one

intermediate axis of each galaxy. We will measure the metallicity

distribution functions and stellar density profiles from star counts

down to very low average surface brightnesses, equivalent to ~32 V-mag

per square arcsec. These observations will provide the definitive HST

study of extra-planar stellar populations of spiral galaxies. Our

targets cover a range in galaxy mass, luminosity, and morphology and as

function of these galaxy properties we will provide: - The first

systematic study of the radial and isophotal shapes of the diffuse

stellar halos of spiral galaxies - The most detailed comparative study

to date of thick disk morphologies and stellar populations - A

comprehensive analysis of halo and thick disk metallicity distributions

as a function of galaxy type and position within the galaxy. - A

sensitive search for tidal streams - The first opportunity to directly

relate globular cluster systems to their field stellar population We

will use these fossil records of the galaxy assembly process preserved

in the old stellar populations to test halo and thick disk formation

models within the hierarchical galaxy formation scheme. We will test

LambdaCDM predictions on sub-galactic scales, where it is difficult to

test using CMB and galaxy redshift surveys, and where it faces its most

serious difficulties.

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA calibration - CR Persistence Part 6

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non-standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science i

mages. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC3/WFPC2 11195

 

Morphologies of the Most Extreme High-Redshift Mid-IR-luminous Galaxies

II: The `Bump' Sources

 

The formative phase of some of the most massive galaxies may be

extremely luminous, characterized by intense star- and AGN-formation.

Till now, few such galaxies have been unambiguously identified at high

redshift, and thus far we have been restricted to studying the

low-redshift ultraluminous infrared galaxies as possible analogs. We

have recently discovered a sample of objects which may indeed represent

this early phase in galaxy formation, and are undertaking an extensive

multiwavelength study of this population. These objects are optically

extremely faint {R>26} but nevertheless bright at mid-infrared

wavelengths {F[24um] > 0.5 mJy}. Mid-infrared spectroscopy with

Spitzer/IRS reveals that they have redshifts z~2, implying luminosities

~1E13 Lsun. Their mid-IR SEDs fall into two broad, perhaps overlapping,

categories. Sources with brighter F[24um] exhibit power-law SEDs and SiO

absorption features in their mid-IR spectra characteristic of AGN,

whereas those with fainter F[24um] show a "bump" characteristic of the

redshifted 1.6um peak from a stellar population, and PAH emission

characteristic of starformation. We have begun obtaining HST images of

the brighter sources in Cycle 15 to obtain identifications and determine

kpc-scale morphologies for these galaxies. Here, we aim to target the

second class {the "bump" sources} with the goal of determining if these

constitute morphologically different objects, or simply a "low-AGN"

state of the brighter class. The proposed observations will help us

determine whether these objects are merging systems, massive obscured

starbursts {with obscuration on kpc scales!} or very reddened {locally

obscured} AGN hosted by intrinsically low-luminosity galaxies.

 

S/C 11163

 

Accreting Pulsating White Dwarfs in Cataclysmic Variables

 

Recent ground-based observations have increased the number of known

pulsating white dwarfs in close binaries with active mass transfer

{cataclysmic variables} from 5 to 11 systems. Our past Cycles 8 and 11

STIS observations of the first 2 known, followed by our Cycle 13 SBC

observations of the next 3 discovered, revealed the clear presence of

the white dwarf and increased amplitude of the pulsations in the UV

compared to the optical. The temperatures derived from the UV spectra

show 4 systems are much hotter than non-interacting pulsating white

dwarfs. A larger sample is needed to sort out the nature of the

instability strip in accreting pulsators i.e. whether effects of

composition and rotation due to accretion result in a well- defined

instability strip as a function of Teff.

 

WFPC2/NIC2 10890

 

Morphologies of the Most Extreme High-Redshift Mid-IR-Luminous Galaxies

 

The formative phase of the most massive galaxies may be extremely

luminous, characterized by intense star- and AGN-formation. Till now,

few such galaxies have been unambiguously identified at high redshift,

restricting us to the study of low-redshift ultraluminous infrared

galaxies as possible analogs. We have recently discovered a sample of

objects which may indeed represent this early phase in galaxy formation,

and are undertaking an extensive multiwavelength study of this

population. These objects are bright at mid-IR wavelengths

{F[24um]>0.8mJy}, but deep ground based imaging suggests extremely faint

{and in some cases extended} optical counterparts {R~24-27}. Deep K-band

images show barely resolved galaxies. Mid-infrared spectroscopy with

Spitzer/IRS reveals that they have redshifts z ~ 2-2.5, suggesting

bolometric luminosities ~10^{13-14}Lsun! We propose to obtain deep ACS

F814W and NIC2 F160W images of these sources and their environs in order

to determine kpc-scale morphologies and surface photometry for these

galaxies. The proposed observations will help us determine whether these

extreme objects are merging systems, massive obscured starbursts {with

obscuration on kpc scales!} or very reddened {locally obscured} AGN

hosted by intrinsically low-luminosity galaxies.

 

WFPC2 11038

 

Narrow Band and Ramp Filter Closeout

 

These observations are to improve calibration of narrow band and ramp

filters. We also test for changes in the filter properties during

WFPC2's 14 years on-board HST.

 

WFPC2 11128

 

Time Scales Of Bulge Formation In Nearby Galaxies

 

Traditionally, bulges are thought to fit well into galaxy formation

models of hierarchical merging. However, it is now becoming well

established that many bulges formed through internal, secular evolution

of the disk rather than through mergers. We call these objects

pseudobulges. Much is still unknown about pseudobulges, the most

pressing questions being: How, exactly, do they build up their mass? How

long does it take? And, how many exist? We are after an answer to these

questions. If pseudobulges form and evolve over longer periods than the

time between mergers, then a significant population of pseudobulges is

hard to explain within current galaxy formation theories. A pseudobulge

indicates that a galaxy has most likely not undergone a major merger

since the formation of the disk. The ages of pseudobulges give us an

estimate for the time scale of this quiescent evolution. We propose to

use 24 orbits of HST time to complete UBVIH imaging on a sample of 33

nearby galaxies that we have observed with Spitzer in the mid-IR. These

data will be used to measure spatially resolved stellar population

parameters {mean stellar age, metallicity, and star formation history};

comparing ages to star formation rates allows us to accurately constrain

the time scale of pseudobulge formation. Our sample of bulges includes

both pseudo- and classical bulges, and evenly samples barred and

unbarred galaxies. Most of our sample is imaged, 13 have complete UBVIH

coverage; we merely ask to complete missing observations so that we may

construct a uniform sample for studying bulge formation. We also wish to

compare the stellar population parameters to a variety of bulge and

global galaxy properties including star formation rates, dynamics,

internal bulge morphology, structure from bulge-disk decompositions, and

gas content. Much of this data set is already or is being assembled.

This will allow us to derive methods of pseudobulge identification that

can be used to accurately count pseudobulges in large surveys. Aside

from our own science goals, we will present this broad set of data to

the community. Thus, we waive proprietary periods for all observations.

 

WFPC2 11289

 

SL2S: The Strong Lensing Legacy Survey

 

Recent systematic surveys of strong galaxy-galaxy lenses {CLASS, SLACS,

GOODS, etc.} are producing spectacular results for galaxy masses roughly

below a transition mass M~10^13 Mo. The observed lens properties and

their evolution up to z~0.2, consistent with numerical simulations, can

be described by isothermal elliptical potentials. In contrast, modeling

of giant arcs in X-ray luminous clusters {halo masses M >~10^13 Mo}

favors NFW mass profiles, suggesting that dark matter halos are not

significantly affected by baryon cooling. Until recently, lensing

surveys were neither deep nor extended enough to probe the intermediate

mass density regime, which is fundamental for understanding the assembly

of structures. The CFHT Legacy Survey now covers 125 square degrees, and

thus offers a large reservoir of strong lenses probing a large range of

mass densities up to z~1. We have extracted a list of 150 strong lenses

using the most recent CFHTLS data release via automated procedures.

Following our first SNAPSHOT proposal in cycle 15, we propose to

continue the Hubble follow-up targeting a larger list of 130 lensing

candidates. These are intermediate mass range candidates {between

galaxies and clusters} that are selected in the redshift range of 0.2-1

with no a priori X-ray selection. The HST resolution is necessary for

confirming the lensing candidates, accurate modeling of the lenses, and

probing the total mass concentration in galaxy groups up to z~1 with the

largest unbiased sample available to date.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                       SCHEDULED      SUCCESSFUL

FGS GSacq                06                06                  

FGS REacq                07                07                   

OBAD with Maneuver  26                26

 

SIGNIFICANT EVENTS: (None)