HUBBLE
SPACE TELESCOPE - Continuing to collect World Class Science
DAILY
REPORT # 4542
PERIOD
COVERED: UT February 06, 2007 (DOY 037)
OBSERVATIONS
SCHEDULED
ACS/SBC
10862
Comprehensive
Auroral Imaging of Jupiter and Saturn during the
International
Heliophysical Year
A
comprehensive set of observations of the auroral emissions from
Jupiter
and Saturn is proposed for the International Heliophysical Year
in
2007, a unique period of especially concentrated measurements of
space
physics phenomena throughout the solar system. We propose to
determine
the physical relationship of the various auroral processes at
Jupiter
and Saturn with conditions in the solar wind at each planet.
This
can be accomplished with campaigns of observations, with a sampling
interval
not to exceed one day, covering at least one solar rotation.
The
solar wind plasma density approaching Jupiter will be measured by
the
New Horizons spacecraft, and a separate campaign near opposition in
May
2007 will determine the effect of large-scale variations in the
interplanetary
magnetic field {IMF} on the Jovian aurora by
extrapolation
from near-Earth solar wind measurements. A similar Saturn
campaign
near opposition in Jan. 2007 will combine extrapolated solar
wind
data with measurements from a wide range of locations within the
Saturn
magnetosphere by Cassini. In the course of making these
observations,
it will be possible to fully map the auroral footprints of
Io
and the other satellites to determine both the local magnetic field
geometry
and the controlling factors in the electromagnetic interaction
of
each satellite with the corotating magnetic field and plasma density.
Also
in the course of making these observations, the auroral emission
properties
will be compared with the properties of the near-IR
ionospheric
emissions {from ground-based observations} and non thermal
radio
emissions, from ground-based observations for Jupiter's decametric
radiation
and Cassini plasma wave measurements of the Saturn Kilometric
Radiation
{SKR}.
NIC1/NIC2/NIC3
8795
NICMOS Post-SAA calibration - CR Persistence Part 6
A
new procedure proposed to alleviate the CR-persistence problem of
NICMOS.
Dark frames will be obtained immediately upon exiting the SAA
contour
23, and every time a NICMOS exposure is scheduled within 50
minutes
of coming out of the SAA. The darks will be obtained in parallel
in
all three NICMOS Cameras. The POST-SAA darks will be non-standard
reference
files available to users with a USEAFTER date/time mark. The
keyword
'USEAFTER=date/time' will also be added to the header of each
POST-SAA
DARK frame. The keyword must be populated with the time, in
addition
to the date, because HST crosses the SAA ~8 times per day so
each
POST-SAA DARK will need to have the appropriate time specified, for
users
to identify the ones they need. Both the raw and processed images
will
be archived as POST-SAA DARKSs. Generally we expect that all NICMOS
science/calibration
observations started within 50 minutes of leaving an
SAA
will need such maps to remove the CR persistence from the science i
mages.
Each observation will need its own CRMAP, as different SAA
passages
leave different imprints on the NICMOS detectors.
WFPC2
11022
WFPC2
Cycle 15 Decontaminations and Associated Observations
This
proposal is for the WFPC2 decons. Also included are instrument
monitors
tied to decons: photometric stability check, focus monitor,
pre-
and post-decon internals {bias, intflats, kspots, & darks}, UV
throughput
check, VISFLAT sweep, and internal UV flat check.
WFPC2
11039
Polarizers
Closeout
Observations
of standard stars and a highly polarized reflection nebula
are
made as a final calibration for the WFPC2 polarizers. VISFLATS are
also
obtained.
WFPC2/NIC1
11083
The
Structure, Formation and Evolution of Galactic Cores and Nuclei
A
surprising result has emerged from the ACS Virgo Cluster Survey
{ACSVCS},
a program to obtain ACS/WFC gz imaging for a large, unbiased
sample
of 100 early-type galaxies in the Virgo Cluster. On subarcsecond
scales
{i.e., <0.1"-1"}, the HST brightness profiles vary systematically
from
the brightest giants {which have nearly constant surface brightness
cores}
to the faintest dwarfs {which have compact stellar nuclei}.
Remarkably,
the fraction of galaxy mass contributed by the nuclei in the
faint
galaxies is identical to that contributed by supermassive black
holes
in the bright galaxies {0.2%}. These findings strongly suggest
that
a single mechanism is responsible for both types of Central Massive
Object:
most likely internally or externally modulated gas inflows that
feed
central black holes or lead to the formation of "nuclear star
clusters".
Understanding the history of gas accretion, star formation
and
chemical enrichment on subarcsecond scales has thus emerged as the
single
most pressing question in the study of nearby galactic nuclei,
either
active or quiescent. We propose an ambitious HST program {199
orbits}
that constitutes the next, obvious step forward:
high-resolution,
ultraviolet {WFPC2/F255W} and infrared {NIC1/F160W}
imaging
for the complete ACSVCS sample. By capitalizing on HST's unique
ability
to provide high-resolution images with a sharp and stable PSF at
UV
and IR wavelengths, we will leverage the existing optical HST data to
obtain
the most complete picture currently possible for the history of
star
formation and chemical enrichment on these small scales. Equally
important,
this program will lead to a significant improvement in the
measured
structural parameters and density distributions for the stellar
nuclei
and the underlying galaxies, and provide a sensitive measure of
"frosting"
by young stars in the galaxy cores. By virtue of its superb
image
quality and stable PSF, NICMOS is the sole instrument capable of
the
IR observations proposed here. In the case of the WFPC2
observations,
high-resolution UV imaging {< 0.1"} is a capability unique
to
HST, yet one that could be lost at any time.
WFPC2
11130
AGNs
with Intermediate-mass Black Holes: Testing the Black Hole-Bulge
Paradigm,
Part II
The
recent progress in the study of central black holes in galactic
nuclei
has led to a general consensus that supermassive {10^6-10^9 solar
mass}
black holes are closely connected with the formation and
evolutionary
history of large galaxies, especially their bulge
component.
Two outstanding issues, however, remain unresolved. Can
central
black holes form in the absence of a bulge? And does the mass
function
of central black holes extend below 10^6 solar masses?
Intermediate-mass
black holes {<10^6 solar masses}, if they exist, may
offer
important clues to the nature of the seeds of supermassive black
holes.
Using the SDSS, our group has successfully uncovered a new
population
of AGNs with intermediate-mass black holes that reside in
low-luminosity
galaxies. However, very little is known about the
detailed
morphologies or structural parameters of the host galaxies
themselves,
including the crucial question of whether they have bulges
or
not. Surprisingly, the majority of the targets of our Cycle 14 pilot
program
have structural properties similar to dwarf elliptical galaxies.
The
statistics from this initial study, however, are really too sparse
to
reach definitive conclusions on this important new class of black
holes.
We wish to extend this study to a larger sample, by using the
Snapshot
mode to obtain WFPC2 F814W images from a parent sample of 175
AGNs
with intermediate- mass black holes selected from our final SDSS
search.
We are particularly keen to determine whether the hosts contain
bulges,
and if so, how the fundamental plane properties of the host
depend
on the mass of their central black holes. We will also
investigate
the environment of this unique class of AGNs.
WFPC2
11289
SL2S:
The Strong Lensing Legacy Survey
Recent
systematic surveys of strong galaxy-galaxy lenses {CLASS, SLACS,
GOODS,
etc.} are producing spectacular results for galaxy masses roughly
below
a transition mass M~10^13 Mo. The observed lens properties and
their
evolution up to z~0.2, consistent with numerical simulations, can
be
described by isothermal elliptical potentials. In contrast, modeling
of
giant arcs in X-ray luminous clusters {halo masses M >~10^13 Mo}
favors
NFW mass profiles, suggesting that dark matter halos are not
significantly
affected by baryon cooling. Until recently, lensing
surveys
were neither deep nor extended enough to probe the intermediate
mass
density regime, which is fundamental for understanding the assembly
of
structures. The CFHT Legacy Survey now covers 125 square degrees, and
thus
offers a large reservoir of strong lenses probing a large range of
mass
densities up to z~1. We have extracted a list of 150 strong lenses
using
the most recent CFHTLS data release via automated procedures.
Following
our first SNAPSHOT proposal in cycle 15, we propose to
continue
the Hubble follow-up targeting a larger list of 130 lensing
candidates.
These are intermediate mass range candidates {between
galaxies
and clusters} that are selected in the redshift range of 0.2-1
with
no a priori X-ray selection. The HST resolution is necessary for
confirming
the lensing candidates, accurate modeling of the lenses, and
probing
the total mass concentration in galaxy groups up to z~1 with the
largest
unbiased sample available to date.
FLIGHT
OPERATIONS SUMMARY:
Significant
Spacecraft Anomalies: (The following are preliminary reports
of potential
non-nominal performance that will be investigated.)
HSTARS:
11179
- GSACQ(1,2,1) fine lock backup on FGS 1
GSACQ(1,2,1) at 037/12:16:56 acquired in fine lock backup on FGS 1
only,
with QF2STOPF and QSTOP flags set on FGS 2. No other flags were
seen.
REACQ(1,2,1) at 13:40:08 also acquired in fine lock backup.
COMPLETED
OPS REQUEST: (None)
COMPLETED
OPS NOTES: (None)
SCHEDULED
SUCCESSFUL
FGS
GSacq
10
10
FGS
REacq
05
05
OBAD
with Maneuver
30
30
SIGNIFICANT
EVENTS: (None)