HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT      # 4543

 

PERIOD COVERED: UT February 07, 2007 (DOY 038)

 

OBSERVATIONS SCHEDULED

 

ACS/SBC 10862

 

Comprehensive Auroral Imaging of Jupiter and Saturn during the

International Heliophysical Year

 

A comprehensive set of observations of the auroral emissions from

Jupiter and Saturn is proposed for the International Heliophysical Year

in 2007, a unique period of especially concentrated measurements of

space physics phenomena throughout the solar system. We propose to

determine the physical relationship of the various auroral processes at

Jupiter and Saturn with conditions in the solar wind at each planet.

This can be accomplished with campaigns of observations, with a sampling

interval not to exceed one day, covering at least one solar rotation.

The solar wind plasma density approaching Jupiter will be measured by

the New Horizons spacecraft, and a separate campaign near opposition in

May 2007 will determine the effect of large-scale variations in the

interplanetary magnetic field {IMF} on the Jovian aurora by

extrapolation from near-Earth solar wind measurements. A similar Saturn

campaign near opposition in Jan. 2007 will combine extrapolated solar

wind data with measurements from a wide range of locations within the

Saturn magnetosphere by Cassini. In the course of making these

observations, it will be possible to fully map the auroral footprints of

Io and the other satellites to determine both the local magnetic field

geometry and the controlling factors in the electromagnetic interaction

of each satellite with the corotating magnetic field and plasma density.

Also in the course of making these observations, the auroral emission

properties will be compared with the properties of the near-IR

ionospheric emissions {from ground-based observations} and non thermal

radio emissions, from ground-based observations for Jupiter's decametric

radiation and Cassini plasma wave measurements of the Saturn Kilometric

Radiation {SKR}.

 

FGS 11210

 

The Architecture of Exoplanetary Systems

 

Are all planetary systems coplanar? Concordance cosmogony makes that

prediction. It is, however, a prediction of extrasolar planetary system

architecture as yet untested by direct observation for main sequence

stars other than the Sun. To provide such a test, we propose to carry

out FGS astrometric studies on four stars hosting seven companions. Our

understanding of the planet formation process will grow as we match not

only system architecture, but formed planet mass and true distance from

the primary with host star characteristics for a wide variety of host

stars and exoplanet masses. We propose that a series of FGS astrometric

observations with demonstrated 1 millisecond of arc per-observation

precision can establish the degree of coplanarity and component true

masses for four extrasolar systems: HD 202206 {brown dwarf+planet}; HD

128311 {planet+planet}, HD 160691 = mu Arae {planet+planet}, and HD

222404AB = gamma Cephei {planet+star}. In each case the companion is

identified as such by assuming that the minimum mass is the actual mass.

For the last target, a known stellar binary system, the companion orbit

is stable only if coplanar with the AB binary orbit.

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA calibration - CR Persistence Part 6

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non-standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science i

mages. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC3/WFPC2 11101

 

The Relevance of Mergers for Fueling AGNs: Answers from QSO Host

Galaxies

 

The majority of QSOs are known to reside in centers of galaxies that

look like ellipticals. Numerical simulations have shown that remnants of

galaxy mergers often closely resemble elliptical galaxies. However, it

is still strongly debated whether the majority of QSO host galaxies are

indeed the result of relatively recent mergers or whether they are

completely analogous to inactive ellipticals to which nothing

interesting has happened recently. To address this question, we recently

obtained deep HST ACS images for five QSO host galaxies that were

classified morphologically as ellipticals {GO-10421}. This pilot study

revealed striking signs of tidal interactions such as ripples, tidal

tails, and warped disks that were not detected in previous studies. Our

observations show that at least some "elliptical" QSO host galaxies are

the products of relatively recent merger events rather than old galaxies

formed at high redshift. However, the question remains whether the host

galaxies of classical QSOs are truly distinct from inactive ellipticals

and whether there is a connection between the merger events we detect

and the current nuclear activity. We must therefore place our results

into a larger statistical context. We are currently conducting an HST

archival study of inactive elliptical galaxies {AR- 10941} to form a

control sample. We now propose to obtain deep HST/WFPC2 images of 13

QSOs whose host galaxies are classified as normal ellipticals. Comparing

the results for both samples will help us determine whether classical

QSOs reside in normal elliptical galaxies or not. Our recent pilot study

of five QSOs indicates that we can expect exciting results and deep

insights into the host galaxy morphology also for this larger sample of

QSOs. A statistically meaningful sample will help us determine the true

fraction of QSO hosts that suffered strong tidal interactions and thus,

whether a merger is indeed a requirement to trigger nuclear activity in

the most luminous AGNs. In addition to our primary science observations

with WFPC2, we will obtain NICMOS3 parallel observations with the

overall goal to select and characterize galaxy populations at high

redshifts. The imaging will be among the deepest NICMOS images: These

NICMOS images are expected to go to a limit a little over 1 magnitude

brighter than HUDF- NICMOS data, but over 13 widely separated fields,

with a total area about 1.5 times larger than HUDF-NICMOS. This

separation means that the survey will tend to average out effects of

cosmic variance. The NICMOS3 images will have sufficient resolution for

an initial characterization of galaxy morphologies, which is currently

one of the most active and promising areas in approaching the problem of

the formation of the first massive galaxies. The depth and area coverage

of our proposed NICMOS observations will also allow a careful study of

the mass function of galaxies at these redshifts. This provides a large

and unbiased sample, selected in terms of stellar mass and unaffected by

cosmic variance, to study the on-going star formation activity as a

function of mass {i.e. integrated star formation} at this very important

epoch.

 

WFPC2 11083

 

The Structure, Formation and Evolution of Galactic Cores and Nuclei

 

A surprising result has emerged from the ACS Virgo Cluster Survey

{ACSVCS}, a program to obtain ACS/WFC gz imaging for a large, unbiased

sample of 100 early-type galaxies in the Virgo Cluster. On subarcsecond

scales {i.e., <0.1"-1"}, the HST brightness profiles vary systematically

from the brightest giants {which have nearly constant surface brightness

cores} to the faintest dwarfs {which have compact stellar nuclei}.

Remarkably, the fraction of galaxy mass contributed by the nuclei in the

faint galaxies is identical to that contributed by supermassive black

holes in the bright galaxies {0.2%}. These findings strongly suggest

that a single mechanism is responsible for both types of Central Massive

Object: most likely internally or externally modulated gas inflows that

feed central black holes or lead to the formation of "nuclear star

clusters". Understanding the history of gas accretion, star formation

and chemical enrichment on subarcsecond scales has thus emerged as the

single most pressing question in the study of nearby galactic nuclei,

either active or quiescent. We propose an ambitious HST program {199

orbits} that constitutes the next, obvious step forward:

high-resolution, ultraviolet {WFPC2/F255W} and infrared {NIC1/F160W}

imaging for the complete ACSVCS sample. By capitalizing on HST's unique

ability to provide high-resolution images with a sharp and stable PSF at

UV and IR wavelengths, we will leverage the existing optical HST data to

obtain the most complete picture currently possible for the history of

star formation and chemical enrichment on these small scales. Equally

important, this program will lead to a significant improvement in the

measured structural parameters and density distributions for the stellar

nuclei and the underlying galaxies, and provide a sensitive measure of

"frosting" by young stars in the galaxy cores. By virtue of its superb

image quality and stable PSF, NICMOS is the sole instrument capable of

the IR observations proposed here. In the case of the WFPC2

observations, high-resolution UV imaging {< 0.1"} is a capability unique

to HST, yet one that could be lost at any time.

 

WFPC2 11103

 

A Snapshot Survey of The Most Massive Clusters of Galaxies

 

We propose the continuation of our highly successful SNAPshot survey of

a sample of 125 very X-ray luminous clusters in the redshift range

0.3-0.7. As demonstrated by the 25 snapshots obtained so far in Cycle14

and Cycle15 these systems frequently exhibit strong gravitational

lensing as well as spectacular examples of violent galaxy interactions.

The proposed observations will provide important constraints on the

cluster mass distributions, the physical nature of galaxy-galaxy and

galaxy-gas interactions in cluster cores, and a set of optically bright,

lensed galaxies for further 8-10m spectroscopy. All of our primary

science goals require only the detection and characterization of

high-surface-brightness features and are thus achievable even at the

reduced sensitivity of WFPC2. Because of their high redshift and thus

compact angular scale our target clusters are less adversely affected by

the smaller field of view of WFPC2 than more nearby systems.

Acknowledging the broad community interest in this sample we waive our

data rights for these observations. Due to a clerical error at STScI our

approved Cycle15 SNAP program was barred from execution for 3 months and

only 6 observations have been performed to date - reinstating this SNAP

at Cycle16 priority is of paramount importance to reach meaningful

statistics.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS:

11181 - REacq(2,3,2) results in Fine Lock Backup(2,0,2)

           During LOS the REacq(2,3,2) scheduled at 038/23:16:48 resulted in fine

           lock backup (2,0,2). At AOS (23:44:34) stop flags QF3STOPF and QSTOP

           were flagging. The OBAD at 23:11:45 showed errors of V1=4.02, V2=6.07,

           V3=-6.92 and RSS=10.04.

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                      SCHEDULED      SUCCESSFUL 

FGS GSacq               11                 11                                  

FGS REacq               04                 04                   

OBAD with Maneuver 30                 30               

 

SIGNIFICANT EVENTS: (None)