HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT    # 4557

 

PERIOD COVERED: UT February 28, 2008 (DOY 059)

 

OBSERVATIONS SCHEDULED

 

FGS 11212

 

Filling the Period Gap for Massive Binaries

 

The current census of binaries among the massive O-type stars is

seriously incomplete for systems in the period range from years to

millennia because the radial velocity variations are too small and the

angular separations too close for easy detection. Here we propose to

discover binaries in this observational gap through a Faint Guidance

Sensor SNAP survey of relatively bright targets listed in the Galactic O

Star Catalog. Our primary goal is to determine the binary frequency

among those in the cluster/association, field, and runaway groups. The

results will help us assess the role of binaries in massive star

formation and in the processes that lead to the ejection of massive

stars from their natal clusters. The program will also lead to the

identification of new, close binaries that will be targets of long term

spectroscopic and high angular resolution observations to determine

their masses and distances. The results will also be important for the

interpretation of the spectra of suspected and newly identified binary

and multiple systems.

 

FGS 11301

 

Dynamical Masses and Radii of Four White Dwarf Stars

 

This proposal uses the FGS1r in TRANS mode to resolve a pair of double

degenerate binary systems {WD1639+153 and WD 1818+26} in order to

determine their orbital elements. In addition, the binaries and several

nearby field stars are observed by FGS1r in POS mode to establish the

local inertial reference frame of each binary, as well as its parallax

and proper motion. This will allow for a direct measurement of the

distance and radius of each of the four WD stars. When combined with the

orbital elements, this leads to a dynamical mass measurement for each

WD, and a four calibration points of the WD mass-radius relation.

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA calibration - CR Persistence Part 6

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non-standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science i

mages. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC2 11135

 

Extreme makeovers: Tracing the transformation of massive galaxies at

z~2.5

 

To obtain a full spectroscopic census of the universe at z~2.5 we have

conducted a near-infrared spectroscopic survey for K-selected galaxies.

We found that, in contrast to the local universe, massive high-redshift

galaxies span a wide range of properties, varying from (dusty) star

burst to "red and dead" galaxies. This may imply that massive galaxies

transform from star-forming to quiescent galaxies in the targeted

redshift range. To understand whether the 9 quiescent galaxies in our

sample are the progenitors of local elliptical, we are observing them in

the current cycle with NIC2. For cycle 16 we propose to complete our

sample of massive z~2.5 galaxies and image the remaining 10 galaxies,

which all have emission lines. Based on emission-line diagnostics, 6 of

these galaxies are identified as star-forming objects and 4 harbor an

active galactic nucleus. The goals are to 1) determine whether star

formation in massive z~2.5 galaxies takes place in disks or is triggered

by merger activity, 2) derive the contribution of AGNs to the rest-frame

optical emission, and 3) test whether the morphologies are consistent

with the idea that the star-forming galaxies, AGNs, and quiescent

galaxies represent subsequent phases of an evolutionary sequence. The

combination of both programs will provide the first morphological study

of a spectroscopically confirmed massive galaxy sample at z~2.5.

 

NIC2 11143

 

NICMOS imaging of submillimeter galaxies with CO and PAH redshifts

 

We propose to obtain F110W and F160W imaging of 10 z~2.4 submillimeter

galaxies {SMGs} whose optical redshifts have been confirmed by the

detection of millimeter CO and/or mid- infrared PAH emission. With the

4000A break falling within/between the two imaging filters, we will be

able to study these sources' spatially resolved stellar populations

{modulo extinction} in the rest-frame optical. SMGs' large luminosities

appear to be due largely to merger-triggered starbursts; high-resolution

NICMOS imaging will help us understand the stellar masses, mass ratios,

and other properties of the merger progenitors, valuable information in

the effort to model the mass assembly history of the universe.

 

NIC2 11155

 

Dust Grain Evolution in Herbig Ae Stars: NICMOS Coronagraphic Imaging

and Polarimetry

 

We propose to take advantage of the sensitive coronagraphic capabilities

of NICMOS to obtain multiwavelength coronagraphic imaging and

polarimetry of primordial dust disks around young intermediate-mass

stars {Herbig Ae stars}, in order to advance our understanding of how

dust grains are assembled into larger bodies. Because the polarization

of scattered light is strongly dependent on scattering particle size and

composition, coronagraphic imaging polarimetry with NICMOS provides a

uniquely powerful tool for measuring grain properties in spatially

resolved circumstellar disks. It is widely believed that planets form

via the gradual accretion of planetesimals in gas-rich, dusty

circumstellar disks, but the connection between this suspected process

and the circumstellar disks that we can now observe around other stars

remains very uncertain. Our proposed observations, together with

powerful 3-D radiative transfer codes, will enable us to quantitatively

determine dust grain properties as a function of location within disks,

and thus to test whether dust grains around young stars are in fact

growing in size during the putative planet-formation epoch. HST imaging

polarimetry of Herbig Ae stars will complement and extend existing

polarimetric studies of disks around lower-mass T Tauri stars and debris

disks around older main-sequence stars. When combined with these

previous studies, the proposed research will help us establish the

influence of stellar mass on the growth of dust grains into larger

planetesimals, and ultimately to planets. Our results will also let us

calibrate models of the thermal emission from these disks, a critical

need for validating the properties of more distant disks inferred on the

basis of spectral information alone.

 

NIC3 11120

 

A Paschen-Alpha Study of Massive Stars and the ISM in the Galactic

Center

 

The Galactic center (GC) is a unique site for a detailed study of a

multitude of complex astrophysical phenomena, which may be common to

nuclear regions of many galaxies. Observable at resolutions

unapproachable in other galaxies, the GC provides an unparalleled

opportunity to improve our understanding of the interrelationships of

massive stars, young stellar clusters, warm and hot ionized gases,

molecular clouds, large scale magnetic fields, and black holes. We

propose the first large-scale hydrogen Paschen alpha line survey of the

GC using NICMOS on the Hubble Space Telescope. This survey will lead to

a high resolution and high sensitivity map of the Paschen alpha line

emission in addition to a map of foreground extinction, made by

comparing Paschen alpha to radio emission. This survey of the inner 75

pc of the Galaxy will provide an unprecedented and complete search for

sites of massive star formation. In particular, we will be able to (1)

uncover the distribution of young massive stars in this region, (2)

locate the surfaces of adjacent molecular clouds, (3) determine

important physical parameters of the ionized gas, (4) identify compact

and ultra-compact HII regions throughout the GC. When combined with

existing Chandra and Spitzer surveys as well as a wealth of other

multi-wavelength observations, the results will allow us to address such

questions as where and how massive stars form, how stellar clusters are

disrupted, how massive stars shape and heat the surrounding medium, and

how various phases of this medium are interspersed.

 

WFPC2 11030

 

WFPC2 WF4 Temperature Reduction #3

 

In the fall of 2005, a serious anomaly was found in images from the WF4

CCD in WFPC2. The WF4 CCD bias level appeared to have become unstable,

resulting in sporadic images with either low or zero bias level. The

severity and frequency of the problem was rapidly increasing, making it

possible that WF4 would soon become unusable if no work-around were

found. Examination of bias levels during periods with frequent WFPC2

images showed low and zero bias episodes every 4 to 6 hours. This

periodicity is driven by cycling of the WFPC2 Replacement Heater, with

the bias anomalies occurring at the temperature peaks. The other three

CCDs {PC1, WF2, and WF3} appear to be unaffected and continue to operate

properly. Lowering the Replacement Heater temperature set points by a

few degrees C effectively eliminates the WF4 anomaly. On 9 January 2006,

the upper set point of the WFPC2 Replacement Heater was reduced from

14.9C to 12.2C. On 20 February 2006, the upper set point was reduced

from 12.2C to 11.3C, and the lower set point was reduced from 10.9C to

10.0C. These changes restored the WF4 CCD bias level; however, the bias

level has begun to trend downwards again, mimicking its behavior in late

2004 and early 2005. A third temperature reduction is planned for March

2007. We will reduce the upper set point of the heater from 11.3C to

10.4C and the lower set point from 10.0C to 9.1C. The observations

described in this proposal will test the performance of WFPC2 before and

after this temperature reduction. Additional temperature reductions may

be needed in the future, depending on the performance of WF4. Orbits:

internal 26, external 1

 

WFPC2 11103

 

A Snapshot Survey of The Most Massive Clusters of Galaxies

 

We propose the continuation of our highly successful SNAPshot survey of

a sample of 125 very X-ray luminous clusters in the redshift range

0.3-0.7. As demonstrated by the 25 snapshots obtained so far in Cycle14

and Cycle15 these systems frequently exhibit strong gravitational

lensing as well as spectacular examples of violent galaxy interactions.

The proposed observations will provide important constraints on the

cluster mass distributions, the physical nature of galaxy-galaxy and

galaxy-gas interactions in cluster cores, and a set of optically bright,

lensed galaxies for further 8-10m spectroscopy. All of our primary

science goals require only the detection and characterization of

high-surface-brightness features and are thus achievable even at the

reduced sensitivity of WFPC2. Because of their high redshift and thus

compact angular scale our target clusters are less adversely affected by

the smaller field of view of WFPC2 than more nearby systems.

Acknowledging the broad community interest in this sample we waive our

data rights for these observations. Due to a clerical error at STScI our

approved Cycle15 SNAP program was barred from execution for 3 months and

only 6 observations have been performed to date - reinstating this SNAP

at Cycle16 priority is of paramount importance to reach meaningful

statistics.

 

WFPC2 11122

 

Expanding PNe: Distances and Hydro Models

 

We propose to obtain repeat narrowband images of a sample of eighteen

planetary nebulae {PNe} which have HST/WFPC2 archival data spanning time

baselines of a decade. All of these targets have previous high

signal-to-noise WFPC2/PC observations and are sufficiently nearby to

have readily detectable expansion signatures after a few years. Our main

scientific objectives are {a} to determine precise distances to these

PNe based on their angular expansions, {b} to test detailed and highly

successful hydrodynamic models that predict nebular morphologies and

expansions for subsamples of round/elliptical and axisymmetric PNe, and

{c} to monitor the proper motions of nebular microstructures in an

effort to learn more about their physical nature and formation

mechanisms. The proposed observations will result in high-precision

distances to a healthy subsample of PNe, and from this their expansion

ages, luminosities, CSPN properties, and masses of their ionized cores.

With good distances and our hydro models, we will be able to determine

fundamental parameters {such as nebular and central star masses,

luminosity, age}. The same images allow us to monitor the changing

overall ionization state and to search for the surprisingly

non-homologous growth patterns to bright elliptical PNe of the same sort

seen by Balick & Hajian {2004} in NGC 6543. Non-uniform growth is a sure

sign of active pressure imbalances within the nebula that require

careful hydro models to understand.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS:

11202 GSAcq(1,2,1) failed to RGA Control while LOS @ 059/21:11:21z

          No FGS flags were set or 486 ESB messages received. NICMOS 705 status

          buffer message (TDF down when a target acquisition SAM request is made)

          with parameter 0 and time 14666 occurred at 21:21:20z. Post-acquisition

          OBAD map at 21:19:25z had RSS error of 29.45 arcseconds.

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                         SCHEDULED      SUCCESSFUL

FGS GSacq                   9             08

FGS REacq                  04             04                 

OBAD with Maneuver   28             28               

 

SIGNIFICANT EVENTS: (None)

 

 

 

-Lynn
____________________________________________________________
Lynn F. Bassford
Hubble Space Telescope
CHAMP Mission Operations Manager

CHAMP Flight Operations Team Manager
Lockheed Martin Mission Services (LMMS)

NASA GSFC PH#: 301-286-2876

"The Hubble Space Telescope is the astronomical observatory and key to unlocking the most cosmic mysteries of the past, present and future."    - 7/26/6