HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT      # 4558

 

PERIOD COVERED: UT February 29,March 01,02, 2008 (DOY 060,061,062)

 

OBSERVATIONS SCHEDULED

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA calibration - CR Persistence Part 6

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non-standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science i

mages. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

WFPC2 11289

 

SL2S: The Strong Lensing Legacy Survey

 

Recent systematic surveys of strong galaxy-galaxy lenses {CLASS, SLACS,

GOODS, etc.} are producing spectacular results for galaxy masses roughly

below a transition mass M~10^13 Mo. The observed lens properties and

their evolution up to z~0.2, consistent with numerical simulations, can

be described by isothermal elliptical potentials. In contrast, modeling

of giant arcs in X-ray luminous clusters {halo masses M >~10^13 Mo}

favors NFW mass profiles, suggesting that dark matter halos are not

significantly affected by baryon cooling. Until recently, lensing

surveys were neither deep nor extended enough to probe the intermediate

mass density regime, which is fundamental for understanding the assembly

of structures. The CFHT Legacy Survey now covers 125 square degrees, and

thus offers a large reservoir of strong lenses probing a large range of

mass densities up to z~1. We have extracted a list of 150 strong lenses

using the most recent CFHTLS data release via automated procedures.

Following our first SNAPSHOT proposal in cycle 15, we propose to

continue the Hubble follow-up targeting a larger list of 130 lensing

candidates. These are intermediate mass range candidates {between

galaxies and clusters} that are selected in the redshift range of 0.2-1

with no a priori X-ray selection. The HST resolution is necessary for

confirming the lensing candidates, accurate modeling of the lenses, and

probing the total mass concentration in galaxy groups up to z~1 with the

largest unbiased sample available to date.

 

NIC2 11237

 

The origin of the break in the AGN luminosity function

 

We propose to use NICMOS imaging to measure rest-frame optical

luminosities and morphological properties of a complete sample of faint

AGN host galaxies at redshifts z ~ 1.4. The targets are drawn from the

VLT-VIMOS Deep Survey, and they constitute a sample of the lowest

luminosity type 1 AGN known at z > 1. The spectroscopically estimated

black hole masses are up to an order of magnitude higher than expected

given their nuclear luminosities, implying highly sub-Eddington

accretion rates. This exactly matches the prediction made by recent

theoretical models of AGN evolution, according to which the faint end of

the AGN luminosity function is populated mainly by big black holes that

have already exhausted a good part of their fuel. In this proposal we

want to test further predictions of that hypothesis, by focussing on the

host galaxy properties of our low-luminosity, low- accretion AGN. If the

local ratio between black hole and bulge masses holds at least

approximately at these redshifts, one expects most of these

low-luminosity AGN to reside in fairly big ellipticals with stellar

masses around and above 10^11 solar masses (in contrast to the Seyfert

phenomenon in the local universe). With NICMOS imaging we will find out

whether that is true, implying also a sensitive test for the validity of

the M_BH/M_bulge relation at z ~ 1.4.

 

FGS 11211

 

An Astrometric Calibration of Population II Distance Indicators

 

In 2002 HST produced a highly precise parallax for RR Lyrae. That

measurement resulted in an absolute magnitude, M{V}= 0.61+/-0.11, a

useful result, judged by the over ten refereed citations each year

since. It is, however, unsatisfactory to have the direct,

parallax-based, distance scale of Population II variables based on a

single star. We propose, therefore, to obtain the parallaxes of four

additional RR Lyrae stars and two Population II Cepheids, or W Vir

stars. The Population II Cepheids lie with the RR Lyrae stars on a

common K-band Period-Luminosity relation. Using these parallaxes to

inform that relationship, we anticipate a zero-point error of 0.04

magnitude. This result should greatly strengthen confidence in the

Population II distance scale and increase our understanding of RR Lyrae

star and Pop II Cepheid astrophysics.

 

FGS 11210

 

The Architecture of Exoplanetary Systems

 

Are all planetary systems coplanar? Concordance cosmogony makes that

prediction. It is, however, a prediction of extrasolar planetary system

architecture as yet untested by direct observation for main sequence

stars other than the Sun. To provide such a test, we propose to carry

out FGS astrometric studies on four stars hosting seven companions. Our

understanding of the planet formation process will grow as we match not

only system architecture, but formed planet mass and true distance from

the primary with host star characteristics for a wide variety of host

stars and exoplanet masses. We propose that a series of FGS astrometric

observations with demonstrated 1 millisecond of arc per-observation

precision can establish the degree of coplanarity and component true

masses for four extrasolar systems: HD 202206 {brown dwarf+planet}; HD

128311 {planet+planet}, HD 160691 = mu Arae {planet+planet}, and HD

222404AB = gamma Cephei {planet+star}. In each case the companion is

identified as such by assuming that the minimum mass is the actual mass.

For the last target, a known stellar binary system, the companion orbit

is stable only if coplanar with the AB binary orbit.

 

WEPC2 11196

 

An Ultraviolet Survey of Luminous Infrared Galaxies in the Local

Universe

 

At luminosities above 10^11.4 L_sun, the space density of far-infrared

selected galaxies exceeds that of optically selected galaxies. These

Luminous Infrared Galaxies {LIRGs} are primarily interacting or merging

disk galaxies undergoing starbursts and creating/fueling central AGN. We

propose far {ACS/SBC/F140LP} and near {WFPC2/PC/F218W} UV imaging of a

sample of 27 galaxies drawn from the complete IRAS Revised Bright Galaxy

Sample {RBGS} LIRGs sample and known, from our Cycle 14 B and I-band ACS

imaging observations, to have significant numbers of bright {23 < B < 21

mag} star clusters in the central 30 arcsec. The HST UV data will be

combined with previously obtained HST, Spitzer, and GALEX images to {i}

calculate the ages of the clusters as function of merger stage, {ii}

measure the amount of UV light in massive star clusters relative to

diffuse regions of star formation, {iii} assess the feasibility of using

the UV slope to predict the far-IR luminosity {and thus the star

formation rate} both among and within IR-luminous galaxies, and {iv}

provide a much needed catalog of rest- frame UV morphologies for

comparison with rest-frame UV images of high-z LIRGs and Lyman Break

Galaxies. These observations will achieve the resolution required to

perform both detailed photometry of compact structures and spatial

correlations between UV and redder wavelengths for a physical

interpretation our IRX-Beta results. The HST UV data, combined with the

HST ACS, Spitzer, Chandra, and GALEX observations of this sample, will

result in the most comprehensive study of luminous starburst galaxies to

date.

 

NIC3 11195

 

Morphologies of the Most Extreme High-Redshift Mid-IR-luminous Galaxies

II: The `Bump' Sources

 

The formative phase of some of the most massive galaxies may be

extremely luminous, characterized by intense star- and AGN-formation.

Till now, few such galaxies have been unambiguously identified at high

redshift, and thus far we have been restricted to studying the

low-redshift ultraluminous infrared galaxies as possible analogs. We

have recently discovered a sample of objects which may indeed represent

this early phase in galaxy formation, and are undertaking an extensive

multiwavelength study of this population. These objects are optically

extremely faint {R>26} but nevertheless bright at mid-infrared

wavelengths {F[24um] > 0.5 mJy}. Mid-infrared spectroscopy with

Spitzer/IRS reveals that they have redshifts z~2, implying luminosities

~1E13 Lsun. Their mid-IR SEDs fall into two broad, perhaps overlapping,

categories. Sources with brighter F[24um] exhibit power-law SEDs and SiO

absorption features in their mid-IR spectra characteristic of AGN,

whereas those with fainter F[24um] show a "bump" characteristic of the

redshifted 1.6um peak from a stellar population, and PAH emission

characteristic of starformation. We have begun obtaining HST images of

the brighter sources in Cycle 15 to obtain identifications and determine

kpc-scale morphologies for these galaxies. Here, we aim to target the

second class {the "bump" sources} with the goal of determining if these

constitute morphologically different objects, or simply a "low-AGN"

state of the brighter class. The proposed observations will help us

determine whether these objects are merging systems, massive obscured

starbursts {with obscuration on kpc scales!} or very reddened {locally

obscured} AGN hosted by intrinsically low-luminosity galaxies.

 

NIC2 11157

 

NICMOS Imaging Survey of Dusty Debris Around Nearby Stars Across the

Stellar Mass Spectrum

 

Association of planetary systems with dusty debris disks is now quite

secure, and advances in our understanding of planet formation and

evolution can be achieved by the identification and characterization of

an ensemble of debris disks orbiting a range of central stars with

different masses and ages. Imaging debris disks in starlight scattered

by dust grains remains technically challenging so that only about a

dozen systems have thus far been imaged. A further advance in this field

needs an increased number of imaged debris disks. However, the technical

challenge of such observations, even with the superb combination of HST

and NICMOS, requires the best targets. Recent HST imaging investigations

of debris disks were sample-limited not limited by the technology used.

We performed a search for debris disks from a IRAS/Hipparcos cross

correlation which involved an exhaustive background contamination check

to weed out false excess stars. Out of ~140 identified debris disks, we

selected 22 best targets in terms of dust optical depth and disk angular

size. Our target sample represents the best currently available target

set in terms of both disk brightness and resolvability. For example, our

targets have higher dust optical depth, in general, than newly

identified Spitzer disks. Also, our targets cover a wider range of

central star ages and masses than previous debris disk surveys. This

will help us to investigate planetary system formation and evolution

across the stellar mass spectrum. The technical feasibility of this

program in two-gyro mode guiding has been proven with on-orbit

calibration and science observations during HST cycles 13, 14, and 15.

 

NIC3 11153

 

The Physical Nature and Age of Lyman Alpha Galaxies

 

In the simplest scenario, strong Lyman alpha emission from high redshift

galaxies would indicate that stellar populations younger than 10 Myrs

dominate the UV. This does not, however, constrain the stellar

populations older than 100 Myrs, which do not contribute to UV light.

Also, the Lyman alpha line can be boosted if the interstellar medium is

both clumpy and dusty. Different studies with small samples have reached

different conclusions about the presence of dust and old stellar

populations in Lyman alpha emitters. We propose HST- NICMOS and

Spitzer-IRAC photometry of 35 Lyman-alpha galaxies at redshift

4.5<z<6.5, in order to determine their spectral energy distribution

{SED} extending through rest-frame optical. This will allow us to

measure accurately {1} The total stellar mass in these objects,

including old stars which may have formed at redshifts {z > 8} not

easily probed by any other means. {2} The dust extinction in the

rest-frame UV, and therefore a correction to their present

star-formation rates. Taken together, these two quantities will yield

the star-formation histories of Lyman alpha galaxies, which form fully

half of the known galaxies at z=4-6. They will tell us whether these are

young or old galaxies by straddling the 4000A break. Data from NICMOS is

essential for these compact and faint {i=25-26th magnitude AB} high

redshift galaxies, which are too faint for good near-IR photometry from

the ground.

 

WFPC2 11146

 

The Role of Stellar Feedback in Galaxy Evolution

 

Stellar feedback - the return of mass and energy from star formation to

the interstellar medium - is one of the primary engines of galaxy

evolution. Yet, the observational canvass of feedback is incomplete. We

propose to investigate this fundamental aspect of star formation on one

local actively star-forming galaxy, He2-10, selected to occupy an

unexplored niche in the key parameter space of stellar mass. The WFPC2

narrow-band observations in the light of H-beta, [OIII], H-alpha, and

[SII] will: {1} discriminate the feedback-induced shock fronts from the

photoionized regions; {2} map, and provide a complete census of, the

shocks inside and around the starburst regions; and {3} measure the

energy budget of the star-formation-produced shocks. These observations,

joined by our previous data and studies on starbursts, will yield: {1}

the efficiency of the feedback, i.e. the fraction of the star

formation's mechanical energy transported out of the starburst volume

rather than radiated away, in the dual-parameter space of host's stellar

mass and star formation intensity; {2} the conditions under which

feedback morphs from a localized process to a galactic scale mechanism.

The high angular resolution of HST is crucial for separating the

spatially narrow shock fronts {~10 pc=0.2" at 10 Mpc} from the more

extended photoionization fronts. This project will provide the most

comprehensive quantitative foundation of stellar feedback and a gauge

for determining the role of feedback in the energetics, structure and

star formation history of galaxies.

 

NIC2 11142

 

Revealing the Physical Nature of Infrared Luminous Galaxies at 0.3

 

We aim to determine physical properties of IR luminous galaxies at

0.3<z<2.7 by requesting coordinated HST/NIC2 and MIPS 70um observations

of a unique, 24um flux-limited sample with complete Spitzer mid-IR

spectroscopy. The 150 sources investigated in this program have S{24um}

> 0.8mJy and their mid-IR spectra have already provided the majority

targets with spectroscopic redshifts {0.3<z<2.7}. The proposed

150~orbits of NIC2 and 66~hours of MIPS 70um will provide the physical

measurements of the light distribution at the rest-frame ~8000A and

better estimates of the bolometric luminosity. Combining these

parameters together with the rich suite of spectral diagnostics from the

mid-IR spectra, we will {1} measure how common mergers are among LIRGs

and ULIRGs at 0.3<z<2.7, and establish if major mergers are the drivers

of z>1 ULIRGs, as in the local Universe. {2} study the co-evolution of

star formation and blackhole accretion by investigating the relations

between the fraction of starburst/AGN measured from mid-IR spectra vs.

HST morphologies, L{bol} and z. {3} obtain the current best estimates of

the far-IR emission, thus L{bol} for this sample, and establish if the

relative contribution of mid-to-far IR dust emission is correlated with

morphology {resolved vs. unresolved}.

 

WFPC2 11138

 

The Physics of the Jets of Powerful Radio Galaxies and Quasars

 

We propose to obtain HST polarimetry of the jets of the quasars 1150+497

and PKS 1136-135. Our goal is to solve the riddle of their high-energy

emission mechanism, and tackle issues such as particle acceleration and

jet dynamics. Our targets are the optically brightest quasar jets, and

they span the range of luminosities and beaming parameters seen in these

objects. Recent observations with Spitzer, HST and Chandra have shed new

light on the spectral morphology of quasar jets, throwing wide open the

question of the nature of their optical and X-ray emission. Three

mechanisms are possible, including synchrotron emission as well as two

Comptonization processes. Polarimetry can uniquely determine which of

these mechanisms operates in the optical. We will compare the optical

polarimetry to in- hand radio polarimetry as well as in-hand and new

Spitzer, HST and Chandra imaging to gain new insights on the structure

of these jets, as well as particle acceleration mechanisms and jet

dynamics.

 

WFPC2 11134

 

WFPC2 Tidal Tail Survey: Probing Star Cluster Formation on the Edge

 

The spectacular HST images of the interiors of merging galaxies such as

the Antennae and NGC 7252 have revealed rich and diverse populations of

star clusters created over the course of the interaction. Intriguingly,

our WFPC2 study of tidal tails in these and other interacting pairs has

shown that star cluster birth in the tails does not follow a similarly

straightforward evolution. In fact, cluster formation in these

relatively sparse environments is not guaranteed -- only one of six

tails in our initial study showed evidence for a significant population

of young star clusters. The tail environment thus offers the opportunity

to probe star cluster formation on the edge of the physical parameter

space {e.g., of stellar and gas mass, density, and pressure} that

permits it to occur. We propose to significantly extend our pilot sample

of optically bright, gas-rich tidal tails by a factor of 4 in number to

include a more diverse population of tails, encompassing major and minor

mergers, gas-rich and gas-poor tails, as well as early, late, and merged

interaction stages. With 21 orbits of HST WFPC2 imaging in the F606W and

F814W filters, we can identify, roughly age-date, and measure sizes of

star clusters to determine what physical parameters affect star cluster

formation. WFPC2 imaging has been used effectively in our initial study

of four mergers, and it will be possible in this program to reach

similar limits of Mv=-8.5 for each of 16 more tails. With the much

larger sample we expect to isolate which factors, such as merger stage,

HI content, and merger mass ratio, drive the formation of star clusters.

 

WFPC2 11130

 

AGNs with Intermediate-mass Black Holes: Testing the Black Hole-Bulge

Paradigm, Part II

 

The recent progress in the study of central black holes in galactic

nuclei has led to a general consensus that supermassive {10^6-10^9 solar

mass} black holes are closely connected with the formation and

evolutionary history of large galaxies, especially their bulge

component. Two outstanding issues, however, remain unresolved. Can

central black holes form in the absence of a bulge? And does the mass

function of central black holes extend below 10^6 solar masses?

Intermediate-mass black holes {<10^6 solar masses}, if they exist, may

offer important clues to the nature of the seeds of supermassive black

holes. Using the SDSS, our group has successfully uncovered a new

population of AGNs with intermediate-mass black holes that reside in

low-luminosity galaxies. However, very little is known about the

detailed morphologies or structural parameters of the host galaxies

themselves, including the crucial question of whether they have bulges

or not. Surprisingly, the majority of the targets of our Cycle 14 pilot

program have structural properties similar to dwarf elliptical galaxies.

The statistics from this initial study, however, are really too sparse

to reach definitive conclusions on this important new class of black

holes. We wish to extend this study to a larger sample, by using the

Snapshot mode to obtain WFPC2 F814W images from a parent sample of 175

AGNs with intermediate- mass black holes selected from our final SDSS

search. We are particularly keen to determine whether the hosts contain

bulges, and if so, how the fundamental plane properties of the host

depend on the mass of their central black holes. We will also

investigate the environment of this unique class of AGNs.

 

WFPC2 11124

 

The Origin of QSO Absorption Lines from QSOs

 

We propose using WFPC2 to image the fields of 10 redshift z ~ 0.7

foreground {FG} QSOs which lie within ~29-151 kpc of the sightlines to

high-z background {BG} QSOs. A surprisingly high fraction of the BG QSO

spectra show strong MgII {2796,2803} absorption lines at precisely the

same redshifts as the FG QSOs. The high resolution capabilities of WFPC2

are needed to understand the origin of these absorption systems, in two

ways. First, we wish to explore the FG QSO environment as close as

possible to the position of the BG QSO, to search for interloping group

or cluster galaxies which might be responsible for the absorption, or

irregularly shaped post-merger debris between the FG and BG QSO which

may indicate the presence of large amount of disrupted gas along a

sightline. Similarly, high resolution images are needed to search for

signs of tidal interactions between any galaxies which might be found

close to the FG QSO. Such features might provide evidence of young

merging events causing the start of QSO duty cycles and producing

outflows from the central AGN. Such winds may be responsible for the

observed absorption lines. Second, we seek to measure the intrinsic

parameters of the FG QSO host galaxy, such as luminosity and morphology,

to correlate with the properties of the MgII absorption lines. We wish

to observe each field through the F814W filter, close to the rest- frame

B-band of the FG QSO. These blue data can reveal enhanced star formation

regions close to the nucleus of the host galaxy, which may be indicative

of galaxy mergers with the FG QSO host. The FG QSO environment offers

quite a different set of phenomena which might be responsible for MgII

absorption, providing an important comparison to studies of MgII

absorption from regular field galaxies.

 

WFPC2 11122

 

Expanding PNe: Distances and Hydro Models

 

We propose to obtain repeat narrowband images of a sample of eighteen

planetary nebulae {PNe} which have HST/WFPC2 archival data spanning time

baselines of a decade. All of these targets have previous high

signal-to-noise WFPC2/PC observations and are sufficiently nearby to

have readily detectable expansion signatures after a few years. Our main

scientific objectives are {a} to determine precise distances to these

PNe based on their angular expansions, {b} to test detailed and highly

successful hydrodynamic models that predict nebular morphologies and

expansions for subsamples of round/elliptical and axisymmetric PNe, and

{c} to monitor the proper motions of nebular microstructures in an

effort to learn more about their physical nature and formation

mechanisms. The proposed observations will result in high-precision

distances to a healthy subsample of PNe, and from this their expansion

ages, luminosities, CSPN properties, and masses of their ionized cores.

With good distances and our hydro models, we will be able to determine

fundamental parameters {such as nebular and central star masses,

luminosity, age}. The same images allow us to monitor the changing

overall ionization state and to search for the surprisingly

non-homologous growth patterns to bright elliptical PNe of the same sort

seen by Balick & Hajian {2004} in NGC 6543. Non-uniform growth is a sure

sign of active pressure imbalances within the nebula that require

careful hydro models to understand.

 

NIC3 11107

 

Imaging of Local Lyman Break Galaxy Analogs: New Clues to Galaxy

Formation in the Early Universe

 

We have used the ultraviolet all-sky imaging survey currently being

conducted by the Galaxy Evolution Explorer {GALEX} to identify for the

first time a rare population of low-redshift starbursts with properties

remarkably similar to high-redshift Lyman Break Galaxies {LBGs}. These

"compact UV luminous galaxies" {UVLGs} resemble LBGs in terms of size,

SFR, surface brightness, mass, metallicity, kinematics, dust, and color.

The UVLG sample offers the unique opportunity of investigating some very

important properties of LBGs that have remained virtually inaccessible

at high redshift: their morphology and the mechanism that drives their

star formation. Therefore, in Cycle 15 we have imaged 7 UVLGs using ACS

in order to 1} characterize their morphology and look for signs of

interactions and mergers, and 2} probe their star formation histories

over a variety of timescales. The images show a striking trend of small-

scale mergers turning large amounts of gas into vigorous starbursts {a

process referred to as dissipational or "wet" merging}. Here, we propose

to complete our sample of 31 LBG analogs using the ACS/SBC F150LP {FUV}

and WFPC2 F606W {R} filters in order to create a statistical sample to

study the mechanism that triggers star formation in UVLGs and its

implications for the nature of LBGs. Specifically, we will 1} study the

trend between galaxy merging and SFR in UVLGs, 2} artificially redshift

the FUV images to z=1-4 and compare morphologies with those in similarly

sized samples of LBGs at the same rest-frame wavelengths in e.g. GOODS,

UDF, and COSMOS, 3} determine the presence and morphology of significant

stellar mass in "pre- burst" stars, and 4} study their immediate

environment. Together with our Spitzer {IRAC+MIPS}, GALEX, SDSS and

radio data, the HST observations will form a unique union of data that

may for the first time shed light on how the earliest major episodes of

star formation in high redshift galaxies came about. This proposal was

adapted from an ACS HRC+WFC proposal to meet the new Cycle 16 observing

constraints, and can be carried out using the ACS/SBC and WFPC2 without

compromising our original science goals.

 

WFPC2 11103

 

A Snapshot Survey of The Most Massive Clusters of Galaxies

 

We propose the continuation of our highly successful SNAPshot survey of

a sample of 125 very X-ray luminous clusters in the redshift range

0.3-0.7. As demonstrated by the 25 snapshots obtained so far in Cycle14

and Cycle15 these systems frequently exhibit strong gravitational

lensing as well as spectacular examples of violent galaxy interactions.

The proposed observations will provide important constraints on the

cluster mass distributions, the physical nature of galaxy-galaxy and

galaxy-gas interactions in cluster cores, and a set of optically bright,

lensed galaxies for further 8-10m spectroscopy. All of our primary

science goals require only the detection and characterization of

high-surface-brightness features and are thus achievable even at the

reduced sensitivity of WFPC2. Because of their high redshift and thus

compact angular scale our target clusters are less adversely affected by

the smaller field of view of WFPC2 than more nearby systems.

Acknowledging the broad community interest in this sample we waive our

data rights for these observations. Due to a clerical error at STScI our

approved Cycle15 SNAP program was barred from execution for 3 months and

only 6 observations have been performed to date - reinstating this SNAP

at Cycle16 priority is of paramount importance to reach meaningful

statistics.

 

WFPC2 11083

 

The Structure, Formation and Evolution of Galactic Cores and Nuclei

 

A surprising result has emerged from the ACS Virgo Cluster Survey

{ACSVCS}, a program to obtain ACS/WFC gz imaging for a large, unbiased

sample of 100 early-type galaxies in the Virgo Cluster. On subarcsecond

scales {i.e., <0.1"-1"}, the HST brightness profiles vary systematically

from the brightest giants {which have nearly constant surface brightness

cores} to the faintest dwarfs {which have compact stellar nuclei}.

Remarkably, the fraction of galaxy mass contributed by the nuclei in the

faint galaxies is identical to that contributed by supermassive black

holes in the bright galaxies {0.2%}. These findings strongly suggest

that a single mechanism is responsible for both types of Central Massive

Object: most likely internally or externally modulated gas inflows that

feed central black holes or lead to the formation of "nuclear star

clusters". Understanding the history of gas accretion, star formation

and chemical enrichment on subarcsecond scales has thus emerged as the

single most pressing question in the study of nearby galactic nuclei,

either active or quiescent. We propose an ambitious HST program {199

orbits} that constitutes the next, obvious step forward:

high-resolution, ultraviolet {WFPC2/F255W} and infrared {NIC1/F160W}

imaging for the complete ACSVCS sample. By capitalizing on HST's unique

ability to provide high-resolution images with a sharp and stable PSF at

UV and IR wavelengths, we will leverage the existing optical HST data to

obtain the most complete picture currently possible for the history of

star formation and chemical enrichment on these small scales. Equally

important, this program will lead to a significant improvement in the

measured structural parameters and density distributions for the stellar

nuclei and the underlying galaxies, and provide a sensitive measure of

"frosting" by young stars in the galaxy cores. By virtue of its superb

image quality and stable PSF, NICMOS is the sole instrument capable of

the IR observations proposed here. In the case of the WFPC2

observations, high-resolution UV imaging {< 0.1"} is a capability unique

to HST, yet one that could be lost at any time.

 

WFPC2 11030

 

WFPC2 WF4 Temperature Reduction #3

 

In the fall of 2005, a serious anomaly was found in images from the WF4

CCD in WFPC2. The WF4 CCD bias level appeared to have become unstable,

resulting in sporadic images with either low or zero bias level. The

severity and frequency of the problem was rapidly increasing, making it

possible that WF4 would soon become unusable if no work-around were

found. Examination of bias levels during periods with frequent WFPC2

images showed low and zero bias episodes every 4 to 6 hours. This

periodicity is driven by cycling of the WFPC2 Replacement Heater, with

the bias anomalies occurring at the temperature peaks. The other three

CCDs {PC1, WF2, and WF3} appear to be unaffected and continue to operate

properly. Lowering the Replacement Heater temperature set points by a

few degrees C effectively eliminates the WF4 anomaly. On 9 January 2006,

the upper set point of the WFPC2 Replacement Heater was reduced from

14.9C to 12.2C. On 20 February 2006, the upper set point was reduced

from 12.2C to 11.3C, and the lower set point was reduced from 10.9C to

10.0C. These changes restored the WF4 CCD bias level; however, the bias

level has begun to trend downwards again, mimicking its behavior in late

2004 and early 2005. A third temperature reduction is planned for March

2007. We will reduce the upper set point of the heater from 11.3C to

10.4C and the lower set point from 10.0C to 9.1C. The observations

described in this proposal will test the performance of WFPC2 before and

after this temperature reduction. Additional temperature reductions may

be needed in the future, depending on the performance of WF4. Orbits:

internal 26, external 1

 

WFPC2 11029

 

WFPC2 CYCLE 15 Intflat Linearity Check and Filter Rotation Anomaly

Monitor

 

Intflat observations will be taken to provide a linearity check: the

linearity test consists of a series of intflats in F555W, in each gain

and each shutter. A combination of intflats, visflats, and earthflats

will be used to check the repeatability of filter wheel motions.

{Intflat sequences tied to decons, visits 1-18 in prop 10363, have been

moved to the cycle 15 decon proposal xxxx for easier scheduling.} Note:

long-exposure WFPC2 intflats must be scheduled during ACS anneals to

prevent stray light from the WFPC2 lamps from contaminating long ACS

external exposures.

 

WFPC2 11028

 

WFPC2 Cycle 15 UV Earth Flats

 

Monitor flat field stability. This proposal obtains sequences of earth

streak flats to improve the quality of pipeline flat fields for the

WFPC2 UV filter set. These Earth flats will complement the UV earth flat

data obtained during cycles 8-14.

 

WFPC2 11027

 

Visible Earth Flats

 

This proposal monitors flatfield stability. This proposal obtains

sequences of Earth streak flats to construct high quality flat fields

for the WFPC2 filter set. These flat fields will allow mapping of the

OTA illumination pattern and will be used in conjunction with previous

internal and external flats to generate new pipeline superflats. These

Earth flats will complement the Earth flat data obtained during cycles

4-14.

 

WFPC2 11020

 

Cycle 15 Focus Monitor

 

The focus of HST is measured primarily with ACS/HRC over full CVZ orbits

to obtain accurate mean focus values via a well sampled breathing curve.

Coma and astigmatism are also determined from the same data in order to

further understand orbital effects on image quality and optical

alignments. To monitor the stability of ACS to WFPC2 relative focii,

we've carried over from previous focus monitor programs parallel

observations taken with the two cameras at suitable orientations of

previously observed targets, and interspersed them with the HRC CVZ

visits.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS:

11203 - GSAcq (2,3,3) failed to RGA Hold (Gyro Control)

           At 060/14:47:31 GSAcq (2,3,3) scheduled from 060/14:44:08 - 14:51:29

           failed due to QF2STOPF and QSTOP flags on FGS-2. OBAD #1 RSS data was

           unavailable due to LOS. OBAD #2 RSS = 16.84a-s. OBAD MAP RSS = 15.29a-s.

           Received 486 ESB 1808 (x2) TxG Sanity Check Failed at AOS

           (060/14:43:00). At 14:47:15 mnemonic F2SSCEA flagged Red High EV=10.16,

           RV=255, EU UL=10 / LL= -10.

 

11204 - GSAcq (2,1,2) results in Fine Lock Backup (2,0,2)

           At AOS (060/18:10:15) GSAcq (2,1,2) scheduled from 060/17:47:29-17:54:48

           resulted in Fine Lock Backup (2,0,2) due to QF1STOPF and QSTOP flags on

           FGS-1. Due to LOS, Pre-acquisition OBAD 1 & 2 data will be unavailable

           until the next scheduled engineering data dump at 061/13:09:29.

           Post-acquisition OBAD MAP RSS = 13.35 a-s.

 

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                      SCHEDULED      SUCCESSFUL 

FGS GSacq               26                 25   

FGS REacq               16                 16                 

OBAD with Maneuver 84                 84               

 

SIGNIFICANT EVENTS: (None)