HUBBLE
SPACE TELESCOPE - Continuing to collect World Class Science
DAILY
REPORT # 4564
PERIOD
COVERED: UT March 10, 2008 (DOY 070)
OBSERVATIONS
SCHEDULED
NIC1/NIC2/NIC3
8795
NICMOS Post-SAA calibration - CR Persistence Part 6
A
new procedure proposed to alleviate the CR-persistence problem of
NICMOS.
Dark frames will be obtained immediately upon exiting the SAA
contour
23, and every time a NICMOS exposure is scheduled within 50
minutes
of coming out of the SAA. The darks will be obtained in parallel
in
all three NICMOS Cameras. The POST-SAA darks will be non-standard
reference
files available to users with a USEAFTER date/time mark. The
keyword
'USEAFTER=date/time' will also be added to the header of each
POST-SAA
DARK frame. The keyword must be populated with the time, in
addition
to the date, because HST crosses the SAA ~8 times per day so
each
POST-SAA DARK will need to have the appropriate time specified, for
users
to identify the ones they need. Both the raw and processed images
will
be archived as POST-SAA DARKSs. Generally we expect that all NICMOS
science/calibration
observations started within 50 minutes of leaving an
SAA
will need such maps to remove the CR persistence from the science i
mages.
Each observation will need its own CRMAP, as different SAA
passages
leave different imprints on the NICMOS detectors.
NIC2
11148
High
Contrast Imaging of Dusty White Dwarfs
For
the past 18 years, only one white dwarf with a circumstellar dust
disk
was known to exist. In the last two years, six new disks have been
discovered.
Since all material inwards of a few AU should be scoured
clean
during post main sequence evolution, the primary explanation is
the
presence of a planetary system that is perturbing relic
planetesimals
into the tidal disruption radius of the white dwarf. Dusty
disks
around white dwarfs should be markers for planets and we propose
to
use high contrast imaging to search for faint companions down to 6
M_$J$
that may be feeding the disks. White dwarfs are uniquely suited
for
planet searches, where the planet/white dwarf contrast is less than
for
main sequence stars.
NIC2
11155
Dust
Grain Evolution in Herbig Ae Stars: NICMOS Coronagraphic Imaging
and
Polarimetry
We
propose to take advantage of the sensitive coronagraphic capabilities
of
NICMOS to obtain multiwavelength coronagraphic imaging and
polarimetry
of primordial dust disks around young intermediate-mass
stars
{Herbig Ae stars}, in order to advance our understanding of how
dust
grains are assembled into larger bodies. Because the polarization
of
scattered light is strongly dependent on scattering particle size and
composition,
coronagraphic imaging polarimetry with NICMOS provides a
uniquely
powerful tool for measuring grain properties in spatially
resolved
circumstellar disks. It is widely believed that planets form
via
the gradual accretion of planetesimals in gas-rich, dusty
circumstellar
disks, but the connection between this suspected process
and
the circumstellar disks that we can now observe around other stars
remains
very uncertain. Our proposed observations, together with
powerful
3-D radiative transfer codes, will enable us to quantitatively
determine
dust grain properties as a function of location within disks,
and
thus to test whether dust grains around young stars are in fact
growing
in size during the putative planet-formation epoch. HST imaging
polarimetry
of Herbig Ae stars will complement and extend existing
polarimetric
studies of disks around lower-mass T Tauri stars and debris
disks
around older main-sequence stars. When combined with these
previous
studies, the proposed research will help us establish the
influence
of stellar mass on the growth of dust grains into larger
planetesimals,
and ultimately to planets. Our results will also let us
calibrate
models of the thermal emission from these disks, a critical
need
for validating the properties of more distant disks inferred on the
basis
of spectral information alone.
NIC2
11164
Molecular
Hydrogen Disks Around T Tauri Stars
We
propose to measure the properties of planetary system-sized disks
around
Sun- like, pre-main sequence stars by imaging the inner parts of
these
disks for the first time in gaseous emission from their most
dominant constituent, molecular hydrogen gas. Specifically, we
will use
the
F212N filter and NICMOS to determine the spatial distribution of
ro-vibrational
H2 emission from protoplanetary disks around selected
classical
and weak-lined T Tauri stars. The target stars are among those
detected
by members of this team through high resolution, ground-based
infrared
spectroscopy. The spectra reveal H2 emission at the rest
velocities
of the stars and at positions spatially coincident with the
stars
at the spatial resolution of the spectroscopic data. This imaging
experiment,
which is impossible to do using ground- based facilities, is
possible
using the NICMOS camera aboard the HST because the point spread
function
of this system is extremely stable and can be measured to a
very
high accuracy. This experiment is an important test of the
interpretation
that the 2.122 micron H2 line emission seen toward T
Tauri
stars is produced at distances of 10 to 30 AU from the stars, the
region
in which giant planets are expected to form around these stars.
These
observations will contribute toward developing a better
understanding
of the process, likelihood, and timescale for the
formation
of planets around Sun-like stars.
NIC2
11219
Active
Galactic Nuclei in nearby galaxies: a new view of the origin of
the
radio-loud radio-quiet dichotomy?
Using
archival HST and Chandra observations of 34 nearby early-type
galaxies
{drawn from a complete radio selected sample} we have found
evidence
that the radio-loud/radio-quiet dichotomy is directly connected
to
the structure of the inner regions of their host galaxies in the
following
sense: [1] Radio-loud AGN are associated with galaxies with
shallow
cores in their light profiles [2] Radio-quiet AGN are only
hosted
by galaxies with steep cusps. Since the brightness profile is
determined
by the galaxy's evolution, through its merger history, our
results
suggest that the same process sets the AGN flavour. This
provides
us with a novel tool to explore the co-evolution of galaxies
and
supermassive black holes, and it opens a new path to understand the
origin
of the radio-loud/radio-quiet AGN dichotomy. Currently our
analysis
is statistically incomplete as the brightness profile is not
available
for 82 of the 116 targets. Most galaxies were not observed
with
HST, while in some cases the study is obstructed by the presence of
dust
features. We here propose to perform an infrared NICMOS snapshot
survey
of these 82 galaxies. This will enable us to i} test the reality
of
the dichotomic behaviour in a substantially larger sample; ii} extend
the
comparison between radio-loud and radio-quiet AGN to a larger range
of
luminosities.
WFPC2
11022
WFPC2
Cycle 15 Decontaminations and Associated Observations
This
proposal is for the WFPC2 decons. Also included are instrument
monitors
tied to decons: photometric stability check, focus monitor,
pre-
and post-decon internals {bias, intflats, kspots, & darks}, UV
throughput
check, VISFLAT sweep, and internal UV flat check.
WFPC2
11030
WFPC2
WF4 Temperature Reduction #3
In
the fall of 2005, a serious anomaly was found in images from the WF4
CCD
in WFPC2. The WF4 CCD bias level appeared to have become unstable,
resulting
in sporadic images with either low or zero bias level. The
severity
and frequency of the problem was rapidly increasing, making it
possible
that WF4 would soon become unusable if no work-around were
found.
Examination of bias levels during periods with frequent WFPC2
images
showed low and zero bias episodes every 4 to 6 hours. This
periodicity
is driven by cycling of the WFPC2 Replacement Heater, with
the
bias anomalies occurring at the temperature peaks. The other three
CCDs
{PC1, WF2, and WF3} appear to be unaffected and continue to operate
properly.
Lowering the Replacement Heater temperature set points by a
few
degrees C effectively eliminates the WF4 anomaly. On 9 January 2006,
the
upper set point of the WFPC2 Replacement Heater was reduced from
14.9C
to 12.2C. On 20 February 2006, the upper set point was reduced
from
12.2C to 11.3C, and the lower set point was reduced from 10.9C to
10.0C.
These changes restored the WF4 CCD bias level; however, the bias
level
has begun to trend downwards again, mimicking its behavior in late
2004
and early 2005. A third temperature reduction is planned for March
2007.
We will reduce the upper set point of the heater from 11.3C to
10.4C
and the lower set point from 10.0C to 9.1C. The observations
described
in this proposal will test the performance of WFPC2 before and
after
this temperature reduction. Additional temperature reductions may
be
needed in the future, depending on the performance of WF4. Orbits:
internal
26, external 1
WFPC2
11083
The
Structure, Formation and Evolution of Galactic Cores and Nuclei
A
surprising result has emerged from the ACS Virgo Cluster Survey
{ACSVCS},
a program to obtain ACS/WFC gz imaging for a large, unbiased
sample
of 100 early-type galaxies in the Virgo Cluster. On subarcsecond
scales
{i.e., <0.1"-1"}, the HST brightness profiles vary systematically
from
the brightest giants {which have nearly constant surface brightness
cores}
to the faintest dwarfs {which have compact stellar nuclei}.
Remarkably,
the fraction of galaxy mass contributed by the nuclei in the
faint
galaxies is identical to that contributed by supermassive black
holes
in the bright galaxies {0.2%}. These findings strongly suggest
that
a single mechanism is responsible for both types of Central Massive
Object:
most likely internally or externally modulated gas inflows that
feed
central black holes or lead to the formation of "nuclear star
clusters".
Understanding the history of gas accretion, star formation
and
chemical enrichment on subarcsecond scales has thus emerged as the
single
most pressing question in the study of nearby galactic nuclei,
either
active or quiescent. We propose an ambitious HST program {199
orbits}
that constitutes the next, obvious step forward:
high-resolution,
ultraviolet {WFPC2/F255W} and infrared {NIC1/F160W}
imaging
for the complete ACSVCS sample. By capitalizing on HST's unique
ability
to provide high-resolution images with a sharp and stable PSF at
UV
and IR wavelengths, we will leverage the existing optical HST data to
obtain
the most complete picture currently possible for the history of
star
formation and chemical enrichment on these small scales. Equally
important,
this program will lead to a significant improvement in the
measured
structural parameters and density distributions for the stellar
nuclei
and the underlying galaxies, and provide a sensitive measure of
"frosting"
by young stars in the galaxy cores. By virtue of its superb
image
quality and stable PSF, NICMOS is the sole instrument capable of
the
IR observations proposed here. In the case of the WFPC2
observations,
high-resolution UV imaging {< 0.1"} is a capability unique
to
HST, yet one that could be lost at any time.
WFPC2
11169
Collisions
in the Kuiper belt
For
most of the 15 year history of observations of Kuiper belt objects,
it
has been speculated that impacts must have played a major role in
shaping
the physical and chemical characteristics of these objects, yet
little
direct evidence of the effects of such impacts has been seen. The
past
18 months, however, have seen an explosion of major new discoveries
giving
some of the first insights into the influence of this critical
process.
From a diversity of observations we have been led to the
hypotheses
that: {1} satellite-forming impacts must have been common in
the
Kuiper belt; {2} such impacts led to significant chemical
modification;
and {3} the outcomes of these impacts are sufficiently
predictable
that we can now find and study these impact-derived systems
by
the chemical and physical attributes of both the satellites and the
primaries.
If our picture is correct, we now have in hand for the first
time
a set of incredibly powerful tools to study the frequency and
outcome
of collisions in the outer solar system. Here we propose three
linked
projects that would answer questions critical to the multiple
prongs
of our hypothesis. In these projects we will study the chemical
effects
of collisions through spectrophotometric observations of
collisionally
formed satellites and through the search for additional
satellites
around primaries with potential impact signatures, and we
will
study the physical effects of impacts through the examination of
tidal
evolution in proposed impact systems. The intensive HST program
that
we propose here will allow us to fully test our new hypotheses and
will
provide the ability to obtain the first extensive insights into
outer
solar system impact processes.
WFPC2
11339
A
deep observation of NGC4261: understanding its unique X-ray source
population,
gas morphology, and jet properties
The
nearby early-type galaxy NGC4261 reveals strikingly asymmetric
distributions
of X-ray sources as seen with Chandra, and globular
clusters
(GC) as seen in the optical band. To address the link between
these
populations based on their spatial correlation, luminosity
function
and spectral properties, and to investigate the possibility
that
this effect is due to the galaxy's merger history, we propose a
100ksec
Chandra ACIS-S3 exposure, which will detect X-ray sources down
to
typical LMXB luminosities (Lx~5E37 erg/s), and HST-WFPC2 observations
to
obtain a deep census of the GC population over the whole galaxy.
These
data will also allow a detailed study of its complex gaseous
component,
and provide information on the unique two-sided X-ray jet.
FLIGHT
OPERATIONS SUMMARY:
Significant
Spacecraft Anomalies: (The following are preliminary reports
of
potential non-nominal performance that will be investigated.)
HSTARS:
(None)
COMPLETED
OPS REQUEST: (None)
COMPLETED
OPS NOTES: (None)
SCHEDULED
SUCCESSFUL
FGS
GSacq
13
13
FGS
REacq
02
02
OBAD
with Maneuver 30
30
SIGNIFICANT
EVENTS: (None)