HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT       # 4573

 

PERIOD COVERED: UT March 21,22,23, 2008 (DOY 081,082,083)

 

OBSERVATIONS SCHEDULED

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA calibration - CR Persistence Part 6

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non-standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science i

mages. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC3 11334

 

NICMOS Cycle 16 Spectrophotometry

 

Observation of the three primary WD flux standards must be repeated to

refine the NICMOS absolute calibration and monitor for sensitivity

degradation. So far, NICMOS grism spectrophotometry is available for

only ~16 stars with good STIS spectra at shorter wavelengths. There are

more in the HST CALSPEC standard star data base with good STIS spectra

that would also become precise IR standards with NICMOS absolute SED

measurements. Monitoring the crucial three very red stars (M, L, T) for

variability and better S/N in the IR. Apparent variability was

discovered at shorter wavelengths during the ACS cross-calibration work

that revealed a ~2% discrepancy of the cool star fluxes with respect to

the hot primary WD standards. About a third of these stars are bright

enough to do in one orbit, the rest require 2 orbits.

 

WFPC2 11233

 

Multiple Generations of Stars in Massive Galactic Globular Clusters

 

This is a follow-up to recent HST imaging of NGC 2808, which discovered

that its main sequence is triple, with three well-separated parallel

branches {Fig.~1}. Along with the double MS of Omega Centauri, this

challenges the long-held paradigm that globular clusters are simple,

single stellar populations. The cause of this main sequence multiplicity

in both clusters is likely to be differences in helium abundance, which

could play a fundamental role in the understanding of stellar

populations. We propose to image seven more of the most massive globular

clusters, to examine their main sequences for indications of splitting.

 

NIC2 11219

 

Active Galactic Nuclei in nearby galaxies: a new view of the origin of

the radio-loud radio-quiet dichotomy?

 

Using archival HST and Chandra observations of 34 nearby early-type

galaxies {drawn from a complete radio selected sample} we have found

evidence that the radio-loud/radio-quiet dichotomy is directly connected

to the structure of the inner regions of their host galaxies in the

following sense: [1] Radio-loud AGN are associated with galaxies with

shallow cores in their light profiles [2] Radio-quiet AGN are only

hosted by galaxies with steep cusps. Since the brightness profile is

determined by the galaxy's evolution, through its merger history, our

results suggest that the same process sets the AGN flavour. This

provides us with a novel tool to explore the co-evolution of galaxies

and supermassive black holes, and it opens a new path to understand the

origin of the radio-loud/radio-quiet AGN dichotomy. Currently our

analysis is statistically incomplete as the brightness profile is not

available for 82 of the 116 targets. Most galaxies were not observed

with HST, while in some cases the study is obstructed by the presence of

dust features. We here propose to perform an infrared NICMOS snapshot

survey of these 82 galaxies. This will enable us to i} test the reality

of the dichotomic behaviour in a substantially larger sample; ii} extend

the comparison between radio-loud and radio-quiet AGN to a larger range

of luminosities.

 

FGS 11213

 

Distances to Eclipsing M Dwarf Binaries

 

We propose HST FGS observations to measure accurate distances of 5

nearby M dwarf eclipsing binary systems, from which model-independent

luminosities can be calculated. These objects have either poor or no

existing parallax measurements. FGS parallax determinations for these

systems, with their existing dynamic masses determined to better than

0.5%, would serve as model-independent anchor points for the low-mass

end of the mass-luminosity diagram.

 

FGS 11211

 

An Astrometric Calibration of Population II Distance Indicators

 

In 2002 HST produced a highly precise parallax for RR Lyrae. That

measurement resulted in an absolute magnitude, M{V}= 0.61+/-0.11, a

useful result, judged by the over ten refereed citations each year

since. It is, however, unsatisfactory to have the direct,

parallax-based, distance scale of Population II variables based on a

single star. We propose, therefore, to obtain the parallaxes of four

additional RR Lyrae stars and two Population II Cepheids, or W Vir

stars. The Population II Cepheids lie with the RR Lyrae stars on a

common K-band Period-Luminosity relation. Using these parallaxes to

inform that relationship, we anticipate a zero-point error of 0.04

magnitude. This result should greatly strengthen confidence in the

Population II distance scale and increase our understanding of RR Lyrae

star and Pop II Cepheid astrophysics.

 

FGS 11210

 

The Architecture of Exoplanetary Systems

 

Are all planetary systems coplanar? Concordance cosmogony makes that

prediction. It is, however, a prediction of extrasolar planetary system

architecture as yet untested by direct observation for main sequence

stars other than the Sun. To provide such a test, we propose to carry

out FGS astrometric studies on four stars hosting seven companions. Our

understanding of the planet formation process will grow as we match not

only system architecture, but formed planet mass and true distance from

the primary with host star characteristics for a wide variety of host

stars and exoplanet masses. We propose that a series of FGS astrometric

observations with demonstrated 1 millisecond of arc per-observation

precision can establish the degree of coplanarity and component true

masses for four extrasolar systems: HD 202206 {brown dwarf+planet}; HD

128311 {planet+planet}, HD 160691 = mu Arae {planet+planet}, and HD

222404AB = gamma Cephei {planet+star}. In each case the companion is

identified as such by assuming that the minimum mass is the actual mass.

For the last target, a known stellar binary system, the companion orbit

is stable only if coplanar with the AB binary orbit.

 

WFPC2 11207

 

Star Formation in the Perseus Cluster Cooling Flow

 

We propose to obtain high resolution, UV/optical imaging of the

"accretion populations" in the massive cooling flow of the Perseus

cluster of galaxies. New GALEX observations show that the dominant

galaxy in this nearby cluster, NGC 1275, has an extended network of

UV-bright populations apparently formed recently from the intracluster

gas. Cluster cooling flows are the most prominent of the environments

where we can readily observe the cycle of gas accretion, star formation,

and feedback from active nuclei that is thought to play a central role

in the formation and evolution of galaxies. Because they can be readily

age-dated, the accretion populations help to trace the sequence of

exchange of material between galaxies and the intracluster medium. The

ACS/SBC and WFPC2/PC cameras offer the highest spatial resolution and

best panchromatic performance available to map the spatial and age

distribution of the accretion populations and their relationship to

radio-emitting plasma and the hot intracluster gas.

 

WFPC2 11202

 

The Structure of Early-type Galaxies: 0.1-100 Effective Radii

 

The structure, formation and evolution of early-type galaxies is still

largely an open problem in cosmology: how does the Universe evolve from

large linear scales dominated by dark matter to the highly non-linear

scales of galaxies, where baryons and dark matter both play important,

interacting, roles? To understand the complex physical processes

involved in their formation scenario, and why they have the tight

scaling relations that we observe today {e.g. the Fundamental Plane}, it

is critically important not only to understand their stellar structure,

but also their dark-matter distribution from the smallest to the largest

scales. Over the last three years the SLACS collaboration has developed

a toolbox to tackle these issues in a unique and encompassing way by

combining new non-parametric strong lensing techniques, stellar

dynamics, and most recently weak gravitational lensing, with

high-quality Hubble Space Telescope imaging and VLT/Keck spectroscopic

data of early-type lens systems. This allows us to break degeneracies

that are inherent to each of these techniques separately and probe the

mass structure of early-type galaxies from 0.1 to 100 effective radii.

The large dynamic range to which lensing is sensitive allows us both to

probe the clumpy substructure of these galaxies, as well as their

low-density outer haloes. These methods have convincingly been

demonstrated, by our team, using smaller pilot-samples of SLACS lens

systems with HST data. In this proposal, we request observing time with

WFPC2 and NICMOS to observe 53 strong lens systems from SLACS, to obtain

complete multi-color imaging for each system. This would bring the total

number of SLACS lens systems to 87 with completed HST imaging and

effectively doubles the known number of galaxy-scale strong lenses. The

deep HST images enable us to fully exploit our new techniques, beat down

low-number statistics, and probe the structure and evolution of

early-type galaxies, not only with a uniform data-set an order of

magnitude larger than what is available now, but also with a fully

coherent and self-consistent methodological approach!

 

WFPC2 11198

 

Pure Parallel Imaging in the NDWFS Bootes Field

 

The NOAO Deep-Wide Field Survey {NDWFS} Bootes field is the target of

one of the most extensive multiwavelength campaigns in astronomy. In

addition to ground-based optical and near-infrared imaging, deep radio

mapping, and extensive spectroscopy, this entire region has been imaged

by the Chandra, Spitzer {IRAC and MIPS}, and GALEX missions. Robust

photometric redshifts {calibrated using over 20,000 spectroscopic

redshifts} exist for all sources brighter than R=24.5 or than 13 uJy at

4.5 microns. To enhance the value of this data set, we propose pure

parallel observations for all approved Cycle 16 programs in this region

that lack coordinated parallel observations. The primary aim of this

program will be to provide a database useful for the broad range of

science programs underway in this region.

 

NIC3 11195

 

Morphologies of the Most Extreme High-Redshift Mid-IR-luminous Galaxies

II: The `Bump' Sources

 

The formative phase of some of the most massive galaxies may be

extremely luminous, characterized by intense star- and AGN-formation.

Till now, few such galaxies have been unambiguously identified at high

redshift, and thus far we have been restricted to studying the

low-redshift ultraluminous infrared galaxies as possible analogs. We

have recently discovered a sample of objects which may indeed represent

this early phase in galaxy formation, and are undertaking an extensive

multiwavelength study of this population. These objects are optically

extremely faint {R>26} but nevertheless bright at mid-infrared

wavelengths {F[24um] > 0.5 mJy}. Mid-infrared spectroscopy with

Spitzer/IRS reveals that they have redshifts z~2, implying luminosities

~1E13 Lsun. Their mid-IR SEDs fall into two broad, perhaps overlapping,

categories. Sources with brighter F[24um] exhibit power-law SEDs and SiO

absorption features in their mid-IR spectra characteristic of AGN,

whereas those with fainter F[24um] show a "bump" characteristic of the

redshifted 1.6um peak from a stellar population, and PAH emission

characteristic of starformation. We have begun obtaining HST images of

the brighter sources in Cycle 15 to obtain identifications and determine

kpc-scale morphologies for these galaxies. Here, we aim to target the

second class {the "bump" sources} with the goal of determining if these

constitute morphologically different objects, or simply a "low-AGN"

state of the brighter class. The proposed observations will help us

determine whether these objects are merging systems, massive obscured

starbursts {with obscuration on kpc scales!} or very reddened {locally

obscured} AGN hosted by intrinsically low-luminosity galaxies.

 

WFPC2 11184

 

Imaging the Shock Precursor in Tycho's SNR

 

Cosmic ray acceleration in supernova remnant shocks requires shock

precursors where particles are trapped by plasma turbulence. The

precursors also heat and compress the upstream gas, producing H alpha

emission and affecting line profiles. We propose to image the brightest

non-radiative shock in Tycho's SNR to measure the brightness and width

of the precursor. These measurements will constrain 2 key parameters in

cosmic ray acceleration models, and they will improve the accuracy of

shock speed and electron-ion equilibration derived from H alpha

profiles.

 

WFPC2 11178

 

Probing Solar System History with Orbits, Masses, and Colors of

Transneptunian Binaries

 

The recent discovery of numerous transneptunian binaries {TNBs} opens a

window into dynamical conditions in the protoplanetary disk where they

formed as well as the history of subsequent events which sculpted the

outer Solar System and emplaced them onto their present day heliocentric

orbits. To date, at least 47 TNBs have been discovered, but only about a

dozen have had their mutual orbits and separate colors determined,

frustrating their use to investigate numerous important scientific

questions. The current shortage of data especially cripples scientific

investigations requiring statistical comparisons among the ensemble

characteristics. We propose to obtain sufficient astrometry and

photometry of 23 TNBs to compute their mutual orbits and system masses

and to determine separate primary and secondary colors, roughly tripling

the sample for which this information is known, as well as extending it

to include systems of two near-equal size bodies. To make the most

efficient possible use of HST, we will use a Monte Carlo technique to

optimally schedule our observations.

 

NIC3 11153

 

The Physical Nature and Age of Lyman Alpha Galaxies

 

In the simplest scenario, strong Lyman alpha emission from high redshift

galaxies would indicate that stellar populations younger than 10 Myrs

dominate the UV. This does not, however, constrain the stellar

populations older than 100 Myrs, which do not contribute to UV light.

Also, the Lyman alpha line can be boosted if the interstellar medium is

both clumpy and dusty. Different studies with small samples have reached

different conclusions about the presence of dust and old stellar

populations in Lyman alpha emitters. We propose HST- NICMOS and

Spitzer-IRAC photometry of 35 Lyman-alpha galaxies at redshift

4.5<z<6.5, in order to determine their spectral energy distribution

{SED} extending through rest-frame optical. This will allow us to

measure accurately {1} The total stellar mass in these objects,

including old stars which may have formed at redshifts {z > 8} not

easily probed by any other means. {2} The dust extinction in the

rest-frame UV, and therefore a correction to their present

star-formation rates. Taken together, these two quantities will yield

the star-formation histories of Lyman alpha galaxies, which form fully

half of the known galaxies at z=4-6. They will tell us whether these are

young or old galaxies by straddling the 4000A break. Data from NICMOS is

essential for these compact and faint {i=25-26th magnitude AB} high

redshift galaxies, which are too faint for good near-IR photometry from

the ground.

 

NIC2 11142

 

Revealing the Physical Nature of Infrared Luminous Galaxies at 0.3

 

We aim to determine physical properties of IR luminous galaxies at

0.3<z<2.7 by requesting coordinated HST/NIC2 and MIPS 70um observations

of a unique, 24um flux-limited sample with complete Spitzer mid-IR

spectroscopy. The 150 sources investigated in this program have S{24um}

> 0.8mJy and their mid-IR spectra have already provided the majority

targets with spectroscopic redshifts {0.3<z<2.7}. The proposed

150~orbits of NIC2 and 66~hours of MIPS 70um will provide the physical

measurements of the light distribution at the rest-frame ~8000A and

better estimates of the bolometric luminosity. Combining these

parameters together with the rich suite of spectral diagnostics from the

mid-IR spectra, we will {1} measure how common mergers are among LIRGs

and ULIRGs at 0.3<z<2.7, and establish if major mergers are the drivers

of z>1 ULIRGs, as in the local Universe. {2} study the co-evolution of

star formation and blackhole accretion by investigating the relations

between the fraction of starburst/AGN measured from mid-IR spectra vs.

HST morphologies, L{bol} and z. {3} obtain the current best estimates of

the far-IR emission, thus L{bol} for this sample, and establish if the

relative contribution of mid-to-far IR dust emission is correlated with

morphology {resolved vs. unresolved}.

 

WFPC2 11130

 

AGNs with Intermediate-mass Black Holes: Testing the Black Hole-Bulge

Paradigm, Part II

 

The recent progress in the study of central black holes in galactic

nuclei has led to a general consensus that supermassive {10^6-10^9 solar

mass} black holes are closely connected with the formation and

evolutionary history of large galaxies, especially their bulge

component. Two outstanding issues, however, remain unresolved. Can

central black holes form in the absence of a bulge? And does the mass

function of central black holes extend below 10^6 solar masses?

Intermediate-mass black holes {<10^6 solar masses}, if they exist, may

offer important clues to the nature of the seeds of supermassive black

holes. Using the SDSS, our group has successfully uncovered a new

population of AGNs with intermediate-mass black holes that reside in

low-luminosity galaxies. However, very little is known about the

detailed morphologies or structural parameters of the host galaxies

themselves, including the crucial question of whether they have bulges

or not. Surprisingly, the majority of the targets of our Cycle 14 pilot

program have structural properties similar to dwarf elliptical galaxies.

The statistics from this initial study, however, are really too sparse

to reach definitive conclusions on this important new class of black

holes. We wish to extend this study to a larger sample, by using the

Snapshot mode to obtain WFPC2 F814W images from a parent sample of 175

AGNs with intermediate- mass black holes selected from our final SDSS

search. We are particularly keen to determine whether the hosts contain

bulges, and if so, how the fundamental plane properties of the host

depend on the mass of their central black holes. We will also

investigate the environment of this unique class of AGNs.

 

WFPC2 11128

 

Time Scales Of Bulge Formation In Nearby Galaxies

 

Traditionally, bulges are thought to fit well into galaxy formation

models of hierarchical merging. However, it is now becoming well

established that many bulges formed through internal, secular evolution

of the disk rather than through mergers. We call these objects

pseudobulges. Much is still unknown about pseudobulges, the most

pressing questions being: How, exactly, do they build up their mass? How

long does it take? And, how many exist? We are after an answer to these

questions. If pseudobulges form and evolve over longer periods than the

time between mergers, then a significant population of pseudobulges is

hard to explain within current galaxy formation theories. A pseudobulge

indicates that a galaxy has most likely not undergone a major merger

since the formation of the disk. The ages of pseudobulges give us an

estimate for the time scale of this quiescent evolution. We propose to

use 24 orbits of HST time to complete UBVIH imaging on a sample of 33

nearby galaxies that we have observed with Spitzer in the mid-IR. These

data will be used to measure spatially resolved stellar population

parameters {mean stellar age, metallicity, and star formation history};

comparing ages to star formation rates allows us to accurately constrain

the time scale of pseudobulge formation. Our sample of bulges includes

both pseudo- and classical bulges, and evenly samples barred and

unbarred galaxies. Most of our sample is imaged, 13 have complete UBVIH

coverage; we merely ask to complete missing observations so that we may

construct a uniform sample for studying bulge formation. We also wish to

compare the stellar population parameters to a variety of bulge and

global galaxy properties including star formation rates, dynamics,

internal bulge morphology, structure from bulge-disk decompositions, and

gas content. Much of this data set is already or is being assembled.

This will allow us to derive methods of pseudobulge identification that

can be used to accurately count pseudobulges in large surveys. Aside

from our own science goals, we will present this broad set of data to

the community. Thus, we waive proprietary periods for all observations.

 

WFPC2 11122

 

Expanding PNe: Distances and Hydro Models

 

We propose to obtain repeat narrowband images of a sample of eighteen

planetary nebulae {PNe} which have HST/WFPC2 archival data spanning time

baselines of a decade. All of these targets have previous high

signal-to-noise WFPC2/PC observations and are sufficiently nearby to

have readily detectable expansion signatures after a few years. Our main

scientific objectives are {a} to determine precise distances to these

PNe based on their angular expansions, {b} to test detailed and highly

successful hydrodynamic models that predict nebular morphologies and

expansions for subsamples of round/elliptical and axisymmetric PNe, and

{c} to monitor the proper motions of nebular microstructures in an

effort to learn more about their physical nature and formation

mechanisms. The proposed observations will result in high-precision

distances to a healthy subsample of PNe, and from this their expansion

ages, luminosities, CSPN properties, and masses of their ionized cores.

With good distances and our hydro models, we will be able to determine

fundamental parameters {such as nebular and central star masses,

luminosity, age}. The same images allow us to monitor the changing

overall ionization state and to search for the surprisingly

non-homologous growth patterns to bright elliptical PNe of the same sort

seen by Balick & Hajian {2004} in NGC 6543. Non-uniform growth is a sure

sign of active pressure imbalances within the nebula that require

careful hydro models to understand.

 

NIC3 11120

 

A Paschen-Alpha Study of Massive Stars and the ISM in the Galactic

Center

 

The Galactic center (GC) is a unique site for a detailed study of a

multitude of complex astrophysical phenomena, which may be common to

nuclear regions of many galaxies. Observable at resolutions

unapproachable in other galaxies, the GC provides an unparalleled

opportunity to improve our understanding of the interrelationships of

massive stars, young stellar clusters, warm and hot ionized gases,

molecular clouds, large scale magnetic fields, and black holes. We

propose the first large-scale hydrogen Paschen alpha line survey of the

GC using NICMOS on the Hubble Space Telescope. This survey will lead to

a high resolution and high sensitivity map of the Paschen alpha line

emission in addition to a map of foreground extinction, made by

comparing Paschen alpha to radio emission. This survey of the inner 75

pc of the Galaxy will provide an unprecedented and complete search for

sites of massive star formation. In particular, we will be able to (1)

uncover the distribution of young massive stars in this region, (2)

locate the surfaces of adjacent molecular clouds, (3) determine

important physical parameters of the ionized gas, (4) identify compact

and ultra-compact HII regions throughout the GC. When combined with

existing Chandra and Spitzer surveys as well as a wealth of other

multi-wavelength observations, the results will allow us to address such

questions as where and how massive stars form, how stellar clusters are

disrupted, how massive stars shape and heat the surrounding medium, and

how various phases of this medium are interspersed.

 

WFPC2 11083

 

The Structure, Formation and Evolution of Galactic Cores and Nuclei

 

A surprising result has emerged from the ACS Virgo Cluster Survey

{ACSVCS}, a program to obtain ACS/WFC gz imaging for a large, unbiased

sample of 100 early-type galaxies in the Virgo Cluster. On subarcsecond

scales {i.e., <0.1"-1"}, the HST brightness profiles vary systematically

from the brightest giants {which have nearly constant surface brightness

cores} to the faintest dwarfs {which have compact stellar nuclei}.

Remarkably, the fraction of galaxy mass contributed by the nuclei in the

faint galaxies is identical to that contributed by supermassive black

holes in the bright galaxies {0.2%}. These findings strongly suggest

that a single mechanism is responsible for both types of Central Massive

Object: most likely internally or externally modulated gas inflows that

feed central black holes or lead to the formation of "nuclear star

clusters". Understanding the history of gas accretion, star formation

and chemical enrichment on subarcsecond scales has thus emerged as the

single most pressing question in the study of nearby galactic nuclei,

either active or quiescent. We propose an ambitious HST program {199

orbits} that constitutes the next, obvious step forward:

high-resolution, ultraviolet {WFPC2/F255W} and infrared {NIC1/F160W}

imaging for the complete ACSVCS sample. By capitalizing on HST's unique

ability to provide high-resolution images with a sharp and stable PSF at

UV and IR wavelengths, we will leverage the existing optical HST data to

obtain the most complete picture currently possible for the history of

star formation and chemical enrichment on these small scales. Equally

important, this program will lead to a significant improvement in the

measured structural parameters and density distributions for the stellar

nuclei and the underlying galaxies, and provide a sensitive measure of

"frosting" by young stars in the galaxy cores. By virtue of its superb

image quality and stable PSF, NICMOS is the sole instrument capable of

the IR observations proposed here. In the case of the WFPC2

observations, high-resolution UV imaging {< 0.1"} is a capability unique

to HST, yet one that could be lost at any time.

 

WFPC2 10905

 

The Dynamic State of the Dwarf Galaxy Rich Canes Venatici I Region

 

With accurate distances, the nearest groups of galaxies can be resolved

in 3 dimensions and the radial component of the motions of galaxies due

to local density perturbations can be distinguished from cosmological

expansion components. Currently, with the ACS, galaxy distances within 8

Mpc can be measured effectively and efficiently by detecting the tip of

the red giant branch {TRGB}. Of four principal groups at high galactic

latitude in this domain, the Canes Venatici I Group {a} is the least

studied, {b} is the most populated, though overwhelmingly by dwarf

galaxies, and {c} is likely the least dynamically evolved. It is

speculated that galaxies in low mass groups may fail to retain baryons

as effectively as those in high mass groups, resulting in significantly

higher mass-to-light ratios. The CVn I Group is suspected to lie in the

mass regime where the speculated astrophysical processes that affect

baryon retention are becoming important.

 

WFPC2 10896

 

An Efficient ACS Coronagraphic Survey for Debris Disks around Nearby

Stars

 

We propose to finish our Cycle 11 optical survey for nearby debris disks

using the ACS/HRC coronagraph. Out of 43 orbits originally proposed for

the survey, 23 orbits were allocated, leading to a survey of 22 stars,

from which two new debris disks were imaged for the first time. Our

analysis of the initial survey gives an empirical estimate for the

detection rate of debris disks relative to heliocentric distance and

dust optical depth. Our target list for Cycle 15 is now optimized to

yield more frequent disk detections. Likewise our observing strategy is

improved to maximize sensitivity per telescope orbit allocated.

Therefore we present the most efficient survey possible. The scientific

motivation is to obtain scattered light images of previously unresolved

debris disks to determine their viewing geometry and physical

architecture, both of which may characterize the underlying planetary

system. We choose 25 debris disk targets for which we predict a

detection rate of 25% ? 5%. Four targets have extrasolar planets from

which the viewing geometry revealed by a disk detection will resolve the

v sin{i} ambiguity in the planet masses. These targets present the

remarkable opportunity of finally seeing a debris disk in system with

known planets.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS:

11228 - GSAcq (1,2,2) failed to RGA Hold (Gyro Hold)

           At 082/00:15:25, GSAcq (1,2,2) scheduled at 082/00:11:16-00:18:32 failed

           to RGA Hold (Gyro Control) due QSTOP flag on FGS 1. Received QF1STOPF &

           QSTOP stop flags on FGS1. No 486 STB messages noted. Pre-acquisition

           OBAD #1 RSS value = 2128.48 arc-seconds. Pre acquisition OBAD #2 RSS

           value = 9.03 arc-seconds. Post-acquisition OBAD MAP was not scheduled.

           REAcq (1,2,2) at 082/01:48:35 was successful.

 

 

11229 - REacq(2,3,3) Failed to RGA Hold

           During LOS REacq(2,3,3) scheduled at 084/06:09:24 failed to RGA Hold. At

           AOS no flags were set. OBAD1 showed errors of V1= -292.59, V2=-444.58,

           V3 =139.19 and RSS= 550.13. OBAS2 showed errors of V1=79.07, V2=68.78,

           V3=30.91 and RSS = 109.26 .

 

11230 - REacq(2,3,3) Failed to Gyro Hold

           REacq(2,3,3) scheduled at 084/07:45:16 failed at 07:50:08 due to search

           radius limit exceeded on FGS 2. OBAD2 showed errors of V1=3.39, V2=0.28,

           V3=-0.40, and RSS=3.42.

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                        SCHEDULED      SUCCESSFUL    

FGS GSacq                26                  25             

FGS REacq                17                  15    

OBAD with Maneuver 76                   76                 

 

SIGNIFICANT EVENTS: (None)