HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT       # 4574

 

PERIOD COVERED: UT March 24, 2008 (DOY 084)

 

OBSERVATIONS SCHEDULED

 

WFPC2 11024

 

WFPC2 CYCLE 15 INTERNAL MONITOR

 

This calibration proposal is the Cycle 15 routine internal monitor for

WFPC2, to be run weekly to monitor the health of the cameras. A variety

of internal exposures are obtained in order to provide a monitor of the

integrity of the CCD camera electronics in both bays {both gain 7 and

gain 15 -- to test stability of gains and bias levels}, a test for

quantum efficiency in the CCDs, and a monitor for possible buildup of

contaminants on the CCD windows. These also provide raw data for

generating annual super-bias reference files for the calibration

pipeline.

 

FGS 11210

 

The Architecture of Exoplanetary Systems

 

Are all planetary systems coplanar? Concordance cosmogony makes that

prediction. It is, however, a prediction of extrasolar planetary system

architecture as yet untested by direct observation for main sequence

stars other than the Sun. To provide such a test, we propose to carry

out FGS astrometric studies on four stars hosting seven companions. Our

understanding of the planet formation process will grow as we match not

only system architecture, but formed planet mass and true distance from

the primary with host star characteristics for a wide variety of host

stars and exoplanet masses. We propose that a series of FGS astrometric

observations with demonstrated 1 millisecond of arc per-observation

precision can establish the degree of coplanarity and component true

masses for four extrasolar systems: HD 202206 {brown dwarf+planet}; HD

128311 {planet+planet}, HD 160691 = mu Arae {planet+planet}, and HD

222404AB = gamma Cephei {planet+star}. In each case the companion is

identified as such by assuming that the minimum mass is the actual mass.

For the last target, a known stellar binary system, the companion orbit

is stable only if coplanar with the AB binary orbit.

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA calibration - CR Persistence Part 6

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non-standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science i

mages. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC3 11120

 

A Paschen-Alpha Study of Massive Stars and the ISM in the Galactic

Center

 

The Galactic center (GC) is a unique site for a detailed study of a

multitude of complex astrophysical phenomena, which may be common to

nuclear regions of many galaxies. Observable at resolutions

unapproachable in other galaxies, the GC provides an unparalleled

opportunity to improve our understanding of the interrelationships of

massive stars, young stellar clusters, warm and hot ionized gases,

molecular clouds, large scale magnetic fields, and black holes. We

propose the first large-scale hydrogen Paschen alpha line survey of the

GC using NICMOS on the Hubble Space Telescope. This survey will lead to

a high resolution and high sensitivity map of the Paschen alpha line

emission in addition to a map of foreground extinction, made by

comparing Paschen alpha to radio emission. This survey of the inner 75

pc of the Galaxy will provide an unprecedented and complete search for

sites of massive star formation. In particular, we will be able to (1)

uncover the distribution of young massive stars in this region, (2)

locate the surfaces of adjacent molecular clouds, (3) determine

important physical parameters of the ionized gas, (4) identify compact

and ultra-compact HII regions throughout the GC. When combined with

existing Chandra and Spitzer surveys as well as a wealth of other

multi-wavelength observations, the results will allow us to address such

questions as where and how massive stars form, how stellar clusters are

disrupted, how massive stars shape and heat the surrounding medium, and

how various phases of this medium are interspersed.

 

NIC3 11147

 

The Origin of Diffuse UV Light from Spiral Disks

 

The ultraviolet light from galaxies has been used as a beacon for

tracing the cosmic star formation history of the Universe, yet we have

an incomplete understanding of many characteristics of this light. Most

of the UV emission from nearby, normal star--forming galaxies is

unresolved and "diffuse", and GALEX has shown that in spiral disks it

permeates the inter-arm regions. The nature of this diffuse inter- arm

component is under debate. Recent results suggest that it may arise from

non- ionizing UV photons which originate in star forming regions in the

spiral arms, travel in the plane of the galaxy, and then scatter off of

diffusely distributed cold dust grains. Alternatively, an in-situ,

unresolved stellar population could produce the observed inter-arm UV

emission. This project seeks to establish which of the two competing

scenarios is responsible for the bulk of this diffuse emission. We

propose to use HST's UV imaging capability (ACS/SBC) to obtain deep

observations of selected fields in the nearby spiral galaxy M101, for

which available (low angular resolution) data favor the 'scattered

light' scenario. Our observations are designed to detect any faint,

UV-luminous stellar population down to main sequence B5 stars. With

these data, we will establish the nature of the bulk of the diffuse UV

light in this spiral galaxy by: (i) quantifying the contribution from

dust-scattered light; (ii) measuring the contribution to the ubiquitous

diffuse ionized medium from in- situ ionizing stars; and (iii) providing

constraints on the observed stellar mass function in the field. Only HST

has the UV sensitivity and angular resolution to discriminate in-situ

stellar populations from scattered light. The ultimate goal of this

project is to re-'calibrate' the UV emission as a star formation rate

indicator, which will need to account for any scattered component.

 

WFPC2 11070

 

WFPC2 CYCLE 15 Standard Darks - part II

 

This dark calibration program obtains dark frames every week in order to

provide data for the ongoing calibration of the CCD dark current rate,

and to monitor and characterize the evolution of hot pixels. Over an

extended period these data will also provide a monitor of radiation

damage to the CCDs.

 

WFPC2 11130

 

AGNs with Intermediate-mass Black Holes: Testing the Black Hole-Bulge

Paradigm, Part II

 

The recent progress in the study of central black holes in galactic

nuclei has led to a general consensus that supermassive {10^6-10^9 solar

mass} black holes are closely connected with the formation and

evolutionary history of large galaxies, especially their bulge

component. Two outstanding issues, however, remain unresolved. Can

central black holes form in the absence of a bulge? And does the mass

function of central black holes extend below 10^6 solar masses?

Intermediate-mass black holes {<10^6 solar masses}, if they exist, may

offer important clues to the nature of the seeds of supermassive black

holes. Using the SDSS, our group has successfully uncovered a new

population of AGNs with intermediate-mass black holes that reside in

low-luminosity galaxies. However, very little is known about the

detailed morphologies or structural parameters of the host galaxies

themselves, including the crucial question of whether they have bulges

or not. Surprisingly, the majority of the targets of our Cycle 14 pilot

program have structural properties similar to dwarf elliptical galaxies.

The statistics from this initial study, however, are really too sparse

to reach definitive conclusions on this important new class of black

holes. We wish to extend this study to a larger sample, by using the

Snapshot mode to obtain WFPC2 F814W images from a parent sample of 175

AGNs with intermediate- mass black holes selected from our final SDSS

search. We are particularly keen to determine whether the hosts contain

bulges, and if so, how the fundamental plane properties of the host

depend on the mass of their central black holes. We will also

investigate the environment of this unique class of AGNs.

 

WFPC2 11169

 

Collisions in the Kuiper belt

 

For most of the 15 year history of observations of Kuiper belt objects,

it has been speculated that impacts must have played a major role in

shaping the physical and chemical characteristics of these objects, yet

little direct evidence of the effects of such impacts has been seen. The

past 18 months, however, have seen an explosion of major new discoveries

giving some of the first insights into the influence of this critical

process. From a diversity of observations we have been led to the

hypotheses that: {1} satellite-forming impacts must have been common in

the Kuiper belt; {2} such impacts led to significant chemical

modification; and {3} the outcomes of these impacts are sufficiently

predictable that we can now find and study these impact-derived systems

by the chemical and physical attributes of both the satellites and the

primaries. If our picture is correct, we now have in hand for the first

time a set of incredibly powerful tools to study the frequency and

outcome of collisions in the outer solar system. Here we propose three

linked projects that would answer questions critical to the multiple

prongs of our hypothesis. In these projects we will study the chemical

effects of collisions through spectrophotometric observations of

collisionally formed satellites and through the search for additional

satellites around primaries with potential impact signatures, and we

will study the physical effects of impacts through the examination of

tidal evolution in proposed impact systems. The intensive HST program

that we propose here will allow us to fully test our new hypotheses and

will provide the ability to obtain the first extensive insights into

outer solar system impact processes.

 

WFPC2 11182

 

The Mass of the Milky Way: Orbits for Leo I and Leo II: Second Epoch

Imaging of Leo II

 

Constraining the mass of the Galaxy at large radii remains a difficult

problem. Available data are still rather scarce, and orbits of even a

few objects at large radii can have a large impact. We propose to obtain

proper motions for the two satellites Leo I and Leo II, which orbit the

Galaxy at about 200 kpc. Together with the radial velocities of these

galaxies, which are well known, the proper motions allow space

velocities to be constructed: these can remove significant uncertainty

in the Galactic mass models, and in particular settle the vexed question

of whether or not Leo I is gravitationally bound to the Galaxy. The

proper motion of Leo I is addressed in a companion archival proposal;

here we address the WFPC2 imagery of Leo II.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                       SCHEDULED      SUCCESSFUL 

FGS GSacq               15                  15                  

FGS REacq               00                  00                  

OBAD with Maneuver 30                  30                 

 

SIGNIFICANT EVENTS: (None)