HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT       # 4577

 

PERIOD COVERED: UT March 27, 2008 (DOY 087)

 

OBSERVATIONS SCHEDULED

 

FGS 11210

 

The Architecture of Exoplanetary Systems

 

Are all planetary systems coplanar? Concordance cosmogony makes that

prediction. It is, however, a prediction of extrasolar planetary system

architecture as yet untested by direct observation for main sequence

stars other than the Sun. To provide such a test, we propose to carry

out FGS astrometric studies on four stars hosting seven companions. Our

understanding of the planet formation process will grow as we match not

only system architecture, but formed planet mass and true distance from

the primary with host star characteristics for a wide variety of host

stars and exoplanet masses. We propose that a series of FGS astrometric

observations with demonstrated 1 millisecond of arc per-observation

precision can establish the degree of coplanarity and component true

masses for four extrasolar systems: HD 202206 {brown dwarf+planet}; HD

128311 {planet+planet}, HD 160691 = mu Arae {planet+planet}, and HD

222404AB = gamma Cephei {planet+star}. In each case the companion is

identified as such by assuming that the minimum mass is the actual mass.

For the last target, a known stellar binary system, the companion orbit

is stable only if coplanar with the AB binary orbit.

 

FGS 11301

 

Dynamical Masses and Radii of Four White Dwarf Stars

 

This proposal uses the FGS1r in TRANS mode to resolve a pair of double

degenerate binary systems {WD1639+153 and WD 1818+26} in order to

determine their orbital elements. In addition, the binaries and several

nearby field stars are observed by FGS1r in POS mode to establish the

local inertial reference frame of each binary, as well as its parallax

and proper motion. This will allow for a direct measurement of the

distance and radius of each of the four WD stars. When combined with the

orbital elements, this leads to a dynamical mass measurement for each

WD, and a four calibration points of the WD mass-radius relation.

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA calibration - CR Persistence Part 6

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non-standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science i

mages. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC3 11120

 

A Paschen-Alpha Study of Massive Stars and the ISM in the Galactic

Center

 

The Galactic center (GC) is a unique site for a detailed study of a

multitude of complex astrophysical phenomena, which may be common to

nuclear regions of many galaxies. Observable at resolutions

unapproachable in other galaxies, the GC provides an unparalleled

opportunity to improve our understanding of the interrelationships of

massive stars, young stellar clusters, warm and hot ionized gases,

molecular clouds, large scale magnetic fields, and black holes. We

propose the first large-scale hydrogen Paschen alpha line survey of the

GC using NICMOS on the Hubble Space Telescope. This survey will lead to

a high resolution and high sensitivity map of the Paschen alpha line

emission in addition to a map of foreground extinction, made by

comparing Paschen alpha to radio emission. This survey of the inner 75

pc of the Galaxy will provide an unprecedented and complete search for

sites of massive star formation. In particular, we will be able to (1)

uncover the distribution of young massive stars in this region, (2)

locate the surfaces of adjacent molecular clouds, (3) determine

important physical parameters of the ionized gas, (4) identify compact

and ultra-compact HII regions throughout the GC. When combined with

existing Chandra and Spitzer surveys as well as a wealth of other

multi-wavelength observations, the results will allow us to address such

questions as where and how massive stars form, how stellar clusters are

disrupted, how massive stars shape and heat the surrounding medium, and

how various phases of this medium are interspersed.

 

NIC3 11153

 

The Physical Nature and Age of Lyman Alpha Galaxies

 

In the simplest scenario, strong Lyman alpha emission from high redshift

galaxies would indicate that stellar populations younger than 10 Myrs

dominate the UV. This does not, however, constrain the stellar

populations older than 100 Myrs, which do not contribute to UV light.

Also, the Lyman alpha line can be boosted if the interstellar medium is

both clumpy and dusty. Different studies with small samples have reached

different conclusions about the presence of dust and old stellar

populations in Lyman alpha emitters. We propose HST- NICMOS and

Spitzer-IRAC photometry of 35 Lyman-alpha galaxies at redshift

4.5<z<6.5, in order to determine their spectral energy distribution

{SED} extending through rest-frame optical. This will allow us to

measure accurately {1} The total stellar mass in these objects,

including old stars which may have formed at redshifts {z > 8} not

easily probed by any other means. {2} The dust extinction in the

rest-frame UV, and therefore a correction to their present

star-formation rates. Taken together, these two quantities will yield

the star-formation histories of Lyman alpha galaxies, which form fully

half of the known galaxies at z=4-6. They will tell us whether these are

young or old galaxies by straddling the 4000A break. Data from NICMOS is

essential for these compact and faint {i=25-26th magnitude AB} high

redshift galaxies, which are too faint for good near-IR photometry from

the ground.

 

WFPC2 11083

 

The Structure, Formation and Evolution of Galactic Cores and Nuclei

 

A surprising result has emerged from the ACS Virgo Cluster Survey

{ACSVCS}, a program to obtain ACS/WFC gz imaging for a large, unbiased

sample of 100 early-type galaxies in the Virgo Cluster. On subarcsecond

scales {i.e., <0.1"-1"}, the HST brightness profiles vary systematically

from the brightest giants {which have nearly constant surface brightness

cores} to the faintest dwarfs {which have compact stellar nuclei}.

Remarkably, the fraction of galaxy mass contributed by the nuclei in the

faint galaxies is identical to that contributed by supermassive black

holes in the bright galaxies {0.2%}. These findings strongly suggest

that a single mechanism is responsible for both types of Central Massive

Object: most likely internally or externally modulated gas inflows that

feed central black holes or lead to the formation of "nuclear star

clusters". Understanding the history of gas accretion, star formation

and chemical enrichment on subarcsecond scales has thus emerged as the

single most pressing question in the study of nearby galactic nuclei,

either active or quiescent. We propose an ambitious HST program {199

orbits} that constitutes the next, obvious step forward:

high-resolution, ultraviolet {WFPC2/F255W} and infrared {NIC1/F160W}

imaging for the complete ACSVCS sample. By capitalizing on HST's unique

ability to provide high-resolution images with a sharp and stable PSF at

UV and IR wavelengths, we will leverage the existing optical HST data to

obtain the most complete picture currently possible for the history of

star formation and chemical enrichment on these small scales. Equally

important, this program will lead to a significant improvement in the

measured structural parameters and density distributions for the stellar

nuclei and the underlying galaxies, and provide a sensitive measure of

"frosting" by young stars in the galaxy cores. By virtue of its superb

image quality and stable PSF, NICMOS is the sole instrument capable of

the IR observations proposed here. In the case of the WFPC2

observations, high-resolution UV imaging {< 0.1"} is a capability unique

to HST, yet one that could be lost at any time.

 

WFPC2 11198

 

Pure Parallel Imaging in the NDWFS Bootes Field

 

The NOAO Deep-Wide Field Survey {NDWFS} Bootes field is the target of

one of the most extensive multiwavelength campaigns in astronomy. In

addition to ground-based optical and near-infrared imaging, deep radio

mapping, and extensive spectroscopy, this entire region has been imaged

by the Chandra, Spitzer {IRAC and MIPS}, and GALEX missions. Robust

photometric redshifts {calibrated using over 20,000 spectroscopic

redshifts} exist for all sources brighter than R=24.5 or than 13 uJy at

4.5 microns. To enhance the value of this data set, we propose pure

parallel observations for all approved Cycle 16 programs in this region

that lack coordinated parallel observations. The primary aim of this

program will be to provide a database useful for the broad range of

science programs underway in this region.

 

WFPC2 11216

 

HST / Chandra Monitoring of a Dramatic Flare in the M87 Jet

 

As the nearest galaxy with an optical jet, M87 affords an unparalleled

opportunity to study extragalactic jet phenomena at the highest

resolution. During 2002, HST and Chandra monitoring of the M87 jet

detected a dramatic flare in knot HST-1 located ~1" from the nucleus.

Its optical brightness eventually increased seventy-fold and peaked in

2005; the X-rays show a similarly dramatic outburst. In both bands HST-1

is still extremely bright and greatly outshines the galaxy nucleus. To

our knowledge this is the first incidence of an optical or X-ray

outburst from a jet region which is spatially distinct from the core

source -- this presents an unprecedented opportunity to study the

processes responsible for non-thermal variability and the X-ray

emission. We propose five epochs of HST/WFPC2 flux monitoring during

Cycle 16, as well as seven epochs of Chandra/ACIS observation {5ksec

each, six Chandra epochs contemporary with HST}. At two of the HST/WFPC2

epochs we also gather spectral information, and at one epoch we will map

the magnetic field structure. The results of this investigation are of

key importance not only for understanding the nature of the X-ray

emission of the M87 jet, but also for understanding flares in blazar

jets, which are highly variable, but where we have never before been

able to resolve the flaring region in the optical or X-rays. These new

observations will allow us to track the decay phase of the giant flare,

and study smaller secondary flares such as seen late in 2006. Ultimately

we will test synchrotron emission models for the X-ray outburst,

constrain particle acceleration and loss timescales, and study the jet

dynamics associated with this flaring component.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                       SCHEDULED      SUCCESSFUL

FGS GSacq               12                 12                  

FGS REacq               03                 03                  

OBAD with Maneuver 30                30                 

 

SIGNIFICANT EVENTS: (None)