HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT    # 4580

 

PERIOD COVERED: UT April 01, 2008 (DOY 092)

 

OBSERVATIONS SCHEDULED

 

FGS 11212

 

Filling the Period Gap for Massive Binaries

 

The current census of binaries among the massive O-type stars is

seriously incomplete for systems in the period range from years to

millennia because the radial velocity variations are too small and the

angular separations too close for easy detection. Here we propose to

discover binaries in this observational gap through a Faint Guidance

Sensor SNAP survey of relatively bright targets listed in the Galactic O

Star Catalog. Our primary goal is to determine the binary frequency

among those in the cluster/association, field, and runaway groups. The

results will help us assess the role of binaries in massive star

formation and in the processes that lead to the ejection of massive

stars from their natal clusters. The program will also lead to the

identification of new, close binaries that will be targets of long term

spectroscopic and high angular resolution observations to determine

their masses and distances. The results will also be important for the

interpretation of the spectra of suspected and newly identified binary

and multiple systems.

 

NIC1/NIC2 11139

 

NICMOS Observations of the Microquasar GRS 1758-258

 

The galactic black hole candidate GRS 1758-258 is normally one of the

brightest persistent gamma-ray sources in the vicinity of the galactic

center. It is a microquasar with relativistic radio jets emanating from

a central variable source. Microquasars are excellent nearby test

laboratories for studying the complex accretion and outflow processes

that take place near black hole horizons. Despite an accurate location

provided by Chandra and the VLA and over a decade of careful

ground-based studies, the optical/infrared counterpart to GRS 1758-258

remains unknown. A stellar counterpart is expected, but the current

candidates are all more than 2 sigma from the center of the error

circle. The ground-based infrared flux limits are also right at the

values expected for the synchrotron emission from the outflow from the

black hole, and possibly for the emission from the accretion disk. This

leaves open the question as to what is powering this very energetic

persistent source. Here we propose to use NICMOS to perform broad-band

imaging of the GRS 1758- 258 error box. These images will be more than

three magnitudes more sensitive than the current ground-based ones. The

resulting spectra will reveal the thermal/non- thermal nature of the

sources in the region of the error box, and the high spatial resolution

images may reveal a jet structure. We propose to perform three visits of

two orbits each spanning the suggested 18.45 day binary orbital period

of the system: a correct counterpart identification should be confirmed

by its variability. We will also aim to support the HST observations

with X- and gamma-ray observations using Swift or INTEGRAL, and with

longer wavelength observations from the ground.

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA calibration - CR Persistence Part 6

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non-standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science i

mages. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC3 11120

 

A Paschen-Alpha Study of Massive Stars and the ISM in the Galactic

Center

 

The Galactic center (GC) is a unique site for a detailed study of a

multitude of complex astrophysical phenomena, which may be common to

nuclear regions of many galaxies. Observable at resolutions

unapproachable in other galaxies, the GC provides an unparalleled

opportunity to improve our understanding of the interrelationships of

massive stars, young stellar clusters, warm and hot ionized gases,

molecular clouds, large scale magnetic fields, and black holes. We

propose the first large-scale hydrogen Paschen alpha line survey of the

GC using NICMOS on the Hubble Space Telescope. This survey will lead to

a high resolution and high sensitivity map of the Paschen alpha line

emission in addition to a map of foreground extinction, made by

comparing Paschen alpha to radio emission. This survey of the inner 75

pc of the Galaxy will provide an unprecedented and complete search for

sites of massive star formation. In particular, we will be able to (1)

uncover the distribution of young massive stars in this region, (2)

locate the surfaces of adjacent molecular clouds, (3) determine

important physical parameters of the ionized gas, (4) identify compact

and ultra-compact HII regions throughout the GC. When combined with

existing Chandra and Spitzer surveys as well as a wealth of other

multi-wavelength observations, the results will allow us to address such

questions as where and how massive stars form, how stellar clusters are

disrupted, how massive stars shape and heat the surrounding medium, and

how various phases of this medium are interspersed.

 

NIC3 11153

 

The Physical Nature and Age of Lyman Alpha Galaxies

 

In the simplest scenario, strong Lyman alpha emission from high redshift

galaxies would indicate that stellar populations younger than 10 Myrs

dominate the UV. This does not, however, constrain the stellar

populations older than 100 Myrs, which do not contribute to UV light.

Also, the Lyman alpha line can be boosted if the interstellar medium is

both clumpy and dusty. Different studies with small samples have reached

different conclusions about the presence of dust and old stellar

populations in Lyman alpha emitters. We propose HST- NICMOS and

Spitzer-IRAC photometry of 35 Lyman-alpha galaxies at redshift

4.5<z<6.5, in order to determine their spectral energy distribution

{SED} extending through rest-frame optical. This will allow us to

measure accurately {1} The total stellar mass in these objects,

including old stars which may have formed at redshifts {z > 8} not

easily probed by any other means. {2} The dust extinction in the

rest-frame UV, and therefore a correction to their present

star-formation rates. Taken together, these two quantities will yield

the star-formation histories of Lyman alpha galaxies, which form fully

half of the known galaxies at z=4-6. They will tell us whether these are

young or old galaxies by straddling the 4000A break. Data from NICMOS is

essential for these compact and faint {i=25-26th magnitude AB} high

redshift galaxies, which are too faint for good near-IR photometry from

the ground.

 

WFPC2 11027

 

Visible Earth Flats

 

This proposal monitors flatfield stability. This proposal obtains

sequences of Earth streak flats to construct high quality flat fields

for the WFPC2 filter set. These flat fields will allow mapping of the

OTA illumination pattern and will be used in conjunction with previous

internal and external flats to generate new pipeline superflats. These

Earth flats will complement the Earth flat data obtained during cycles

4-14.

 

WFPC2 11029

 

WFPC2 CYCLE 15 Intflat Linearity Check and Filter Rotation Anomaly

Monitor

 

Intflat observations will be taken to provide a linearity check: the

linearity test consists of a series of intflats in F555W, in each gain

and each shutter. A combination of intflats, visflats, and earthflats

will be used to check the repeatability of filter wheel motions.

{Intflat sequences tied to decons, visits 1-18 in prop 10363, have been

moved to the cycle 15 decon proposal xxxx for easier scheduling.} Note:

long-exposure WFPC2 intflats must be scheduled during ACS anneals to

prevent stray light from the WFPC2 lamps from contaminating long ACS

external exposures.

 

WFPC2 11083

 

The Structure, Formation and Evolution of Galactic Cores and Nuclei

 

A surprising result has emerged from the ACS Virgo Cluster Survey

{ACSVCS}, a program to obtain ACS/WFC gz imaging for a large, unbiased

sample of 100 early-type galaxies in the Virgo Cluster. On subarcsecond

scales {i.e., <0.1"-1"}, the HST brightness profiles vary systematically

from the brightest giants {which have nearly constant surface brightness

cores} to the faintest dwarfs {which have compact stellar nuclei}.

Remarkably, the fraction of galaxy mass contributed by the nuclei in the

faint galaxies is identical to that contributed by supermassive black

holes in the bright galaxies {0.2%}. These findings strongly suggest

that a single mechanism is responsible for both types of Central Massive

Object: most likely internally or externally modulated gas inflows that

feed central black holes or lead to the formation of "nuclear star

clusters". Understanding the history of gas accretion, star formation

and chemical enrichment on subarcsecond scales has thus emerged as the

single most pressing question in the study of nearby galactic nuclei,

either active or quiescent. We propose an ambitious HST program {199

orbits} that constitutes the next, obvious step forward:

high-resolution, ultraviolet {WFPC2/F255W} and infrared {NIC1/F160W}

imaging for the complete ACSVCS sample. By capitalizing on HST's unique

ability to provide high-resolution images with a sharp and stable PSF at

UV and IR wavelengths, we will leverage the existing optical HST data to

obtain the most complete picture currently possible for the history of

star formation and chemical enrichment on these small scales. Equally

important, this program will lead to a significant improvement in the

measured structural parameters and density distributions for the stellar

nuclei and the underlying galaxies, and provide a sensitive measure of

"frosting" by young stars in the galaxy cores. By virtue of its superb

image quality and stable PSF, NICMOS is the sole instrument capable of

the IR observations proposed here. In the case of the WFPC2

observations, high-resolution UV imaging {< 0.1"} is a capability unique

to HST, yet one that could be lost at any time.

 

WFPC2 11128

 

Time Scales Of Bulge Formation In Nearby Galaxies

 

Traditionally, bulges are thought to fit well into galaxy formation

models of hierarchical merging. However, it is now becoming well

established that many bulges formed through internal, secular evolution

of the disk rather than through mergers. We call these objects

pseudobulges. Much is still unknown about pseudobulges, the most

pressing questions being: How, exactly, do they build up their mass? How

long does it take? And, how many exist? We are after an answer to these

questions. If pseudobulges form and evolve over longer periods than the

time between mergers, then a significant population of pseudobulges is

hard to explain within current galaxy formation theories. A pseudobulge

indicates that a galaxy has most likely not undergone a major merger

since the formation of the disk. The ages of pseudobulges give us an

estimate for the time scale of this quiescent evolution. We propose to

use 24 orbits of HST time to complete UBVIH imaging on a sample of 33

nearby galaxies that we have observed with Spitzer in the mid-IR. These

data will be used to measure spatially resolved stellar population

parameters {mean stellar age, metallicity, and star formation history};

comparing ages to star formation rates allows us to accurately constrain

the time scale of pseudobulge formation. Our sample of bulges includes

both pseudo- and classical bulges, and evenly samples barred and

unbarred galaxies. Most of our sample is imaged, 13 have complete UBVIH

coverage; we merely ask to complete missing observations so that we may

construct a uniform sample for studying bulge formation. We also wish to

compare the stellar population parameters to a variety of bulge and

global galaxy properties including star formation rates, dynamics,

internal bulge morphology, structure from bulge-disk decompositions, and

gas content. Much of this data set is already or is being assembled.

This will allow us to derive methods of pseudobulge identification that

can be used to accurately count pseudobulges in large surveys. Aside

from our own science goals, we will present this broad set of data to

the community. Thus, we waive proprietary periods for all observations.

 

WFPC2 11198

 

Pure Parallel Imaging in the NDWFS Bootes Field

 

The NOAO Deep-Wide Field Survey {NDWFS} Bootes field is the target of

one of the most extensive multiwavelength campaigns in astronomy. In

addition to ground-based optical and near-infrared imaging, deep radio

mapping, and extensive spectroscopy, this entire region has been imaged

by the Chandra, Spitzer {IRAC and MIPS}, and GALEX missions. Robust

photometric redshifts {calibrated using over 20,000 spectroscopic

redshifts} exist for all sources brighter than R=24.5 or than 13 uJy at

4.5 microns. To enhance the value of this data set, we propose pure

parallel observations for all approved Cycle 16 programs in this region

that lack coordinated parallel observations. The primary aim of this

program will be to provide a database useful for the broad range of

science programs underway in this region.

 

WFPC2 11202

 

The Structure of Early-type Galaxies: 0.1-100 Effective Radii

 

The structure, formation and evolution of early-type galaxies is still

largely an open problem in cosmology: how does the Universe evolve from

large linear scales dominated by dark matter to the highly non-linear

scales of galaxies, where baryons and dark matter both play important,

interacting, roles? To understand the complex physical processes

involved in their formation scenario, and why they have the tight

scaling relations that we observe today {e.g. the Fundamental Plane}, it

is critically important not only to understand their stellar structure,

but also their dark-matter distribution from the smallest to the largest

scales. Over the last three years the SLACS collaboration has developed

a toolbox to tackle these issues in a unique and encompassing way by

combining new non-parametric strong lensing techniques, stellar

dynamics, and most recently weak gravitational lensing, with

high-quality Hubble Space Telescope imaging and VLT/Keck spectroscopic

data of early-type lens systems. This allows us to break degeneracies

that are inherent to each of these techniques separately and probe the

mass structure of early-type galaxies from 0.1 to 100 effective radii.

The large dynamic range to which lensing is sensitive allows us both to

probe the clumpy substructure of these galaxies, as well as their

low-density outer haloes. These methods have convincingly been

demonstrated, by our team, using smaller pilot-samples of SLACS lens

systems with HST data. In this proposal, we request observing time with

WFPC2 and NICMOS to observe 53 strong lens systems from SLACS, to obtain

complete multi-color imaging for each system. This would bring the total

number of SLACS lens systems to 87 with completed HST imaging and

effectively doubles the known number of galaxy-scale strong lenses. The

deep HST images enable us to fully exploit our new techniques, beat down

low-number statistics, and probe the structure and evolution of

early-type galaxies, not only with a uniform data-set an order of

magnitude larger than what is available now, but also with a fully

coherent and self-consistent methodological approach!

 

WFPC2 11326

 

Polarizers Closeout (Internal Observations)

 

Verify stability of polarization calibration.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                             SCHEDULED      SUCCESSFUL

FGS GSacq                      11              11                  

FGS REacq                       04              04                  

OBAD with Maneuver        30              30                 

 

SIGNIFICANT EVENTS: (None)

 

 

-Lynn
____________________________________________________________
Lynn F. Bassford
Hubble Space Telescope
CHAMP Mission Operations Manager

CHAMP Flight Operations Team Manager
Lockheed Martin Mission Services (LMMS)

NASA GSFC PH#: 301-286-2876

"The Hubble Space Telescope is the astronomical observatory and key to unlocking the most cosmic mysteries of the past, present and future."    - 7/26/6