HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT       # 4596

 

PERIOD COVERED: UT April 23, 2008 (DOY 114)

 

OBSERVATIONS SCHEDULED

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA calibration - CR Persistence Part 6

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non-standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science i

mages. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC2 10852

 

Coronagraphic Polarimetry with NICMOS: Dust grain evolution in T Tauri

stars

 

The formation of planetary systems is intimately linked to the dust

population in circumstellar disks, thus understanding dust grain

evolution is essential to advancing our understanding of how planets

form. By combining {1} the coronagraphic polarimetry capabilities of

NICMOS, {2} powerful 3-D radiative transfer codes, and {3} observations

of objects known to span the Class II- III stellar evolutionary phases,

we will gain crucial insight into dust grain growth. By observing

objects representative of a known evolutionary sequence of YSOs, we will

be able to investigate how the dust population evolves in size and

distribution during the crucial transition from a star+disk system to a

system containing planetesimals. When combine with our previous study on

dust grain evolution in the Class I-II phase, the proposed study will

help to establish the fundamental time scales for the depletion of

ISM-like grains: the first step in understanding the transformation from

small submicron sized dust grains, to large millimeter sized grains, and

untimely to planetary bodies.

 

NIC2/WFPC2 11142

 

Revealing the Physical Nature of Infrared Luminous Galaxies at 0.3<z<2.7

Using HST and Spitzer

 

We aim to determine physical properties of IR luminous galaxies at

0.3<z<2.7 by requesting coordinated HST/NIC2 and MIPS 70um observations

of a unique, 24um flux-limited sample with complete Spitzer mid-IR

spectroscopy. The 150 sources investigated in this program have S{24um}

> 0.8mJy and their mid-IR spectra have already provided the majority

targets with spectroscopic redshifts {0.3<z<2.7}. The proposed

150~orbits of NIC2 and 66~hours of MIPS 70um will provide the physical

measurements of the light distribution at the rest-frame ~8000A and

better estimates of the bolometric luminosity. Combining these

parameters together with the rich suite of spectral diagnostics from the

mid-IR spectra, we will {1} measure how common mergers are among LIRGs

and ULIRGs at 0.3<z<2.7, and establish if major mergers are the drivers

of z>1 ULIRGs, as in the local Universe. {2} study the co-evolution of

star formation and blackhole accretion by investigating the relations

between the fraction of starburst/AGN measured from mid-IR spectra vs.

HST morphologies, L{bol} and z. {3} obtain the current best estimates of

the far-IR emission, thus L{bol} for this sample, and establish if the

relative contribution of mid-to-far IR dust emission is correlated with

morphology {resolved vs. unresolved}.

 

NIC3 11120

 

A Paschen-Alpha Study of Massive Stars and the ISM in the Galactic

Center

 

The Galactic center (GC) is a unique site for a detailed study of a

multitude of complex astrophysical phenomena, which may be common to

nuclear regions of many galaxies. Observable at resolutions

unapproachable in other galaxies, the GC provides an unparalleled

opportunity to improve our understanding of the interrelationships of

massive stars, young stellar clusters, warm and hot ionized gases,

molecular clouds, large scale magnetic fields, and black holes. We

propose the first large-scale hydrogen Paschen alpha line survey of the

GC using NICMOS on the Hubble Space Telescope. This survey will lead to

a high resolution and high sensitivity map of the Paschen alpha line

emission in addition to a map of foreground extinction, made by

comparing Paschen alpha to radio emission. This survey of the inner 75

pc of the Galaxy will provide an unprecedented and complete search for

sites of massive star formation. In particular, we will be able to (1)

uncover the distribution of young massive stars in this region, (2)

locate the surfaces of adjacent molecular clouds, (3) determine

important physical parameters of the ionized gas, (4) identify compact

and ultra-compact HII regions throughout the GC. When combined with

existing Chandra and Spitzer surveys as well as a wealth of other

multi-wavelength observations, the results will allow us to address such

questions as where and how massive stars form, how stellar clusters are

disrupted, how massive stars shape and heat the surrounding medium, and

how various phases of this medium are interspersed.

 

WFPC2 11113

 

Binaries in the Kuiper Belt: Probes of Solar System Formation and

Evolution

 

The discovery of binaries in the Kuiper Belt and related small body

populations is powering a revolutionary step forward in the study of

this remote region. Three quarters of the known binaries in the Kuiper

Belt have been discovered with HST, most by our snapshot surveys. The

statistics derived from this work are beginning to yield surprising and

unexpected results. We have found a strong concentration of binaries

among low-inclination Classicals, a possible size cutoff to binaries

among the Centaurs, an apparent preference for nearly equal mass

binaries, and a strong increase in the number of binaries at small

separations. We propose to continue this successful program in Cycle 16;

we expect to discover at least 13 new binary systems, targeted to

subgroups where these discoveries can have the greatest impact.

 

WFPC2 11160

 

Escape fraction and stellar populations in a highly magnified

Lyman-Break Galaxy

 

Understanding how star-forming galaxies contribute to cosmic

reionization is one of the frontiers of observational cosmology. A key

ingredient in this issue is measuring the escape fraction of

Lyman-continuum photons in high redshift galaxies (z>3). Gravitationally

lensed Lyman-break galaxies (LBGs) act as important laboratories for

studying the resolved physical properties at sub-kpc scales with high

signal-to-noise. Correlating the local escape fraction with physical

parameters derived from stellar population modeling (such as the star

formation rate, age and reddening) will offer new insights into

understanding the physical processes involved with the production of

ionizing photons. We propose here follow-up observations of the "Cosmic

Eye", a remarkable, highly magnified (x 30), Lyman-break galaxy at

z~3.07 using WFPC2 and NICMOS. Deep ultraviolet WFPC2 imaging will

provide a detailed study of variations in the escape fraction, while

WFPC2 and NICMOS/NIC2 imaging will complement the current broad-band

detections to allow a precise modeling of the spatially-dependent

spectral energy distribution. This will allow the first comprehensive

analysis between the escape fraction, the local SED and the dynamics of

a distant galaxy.

 

WFPC2 11201

 

Systemic and Internal motions of the Magellanic Clouds: Third Epoch

Images

 

In Cycles 11 and 13 we obtained two epochs of ACS/HRC data for fields in

the Magellanic Clouds centered on background quasars. We used these data

to determine the proper motions of the LMC and SMC to better than 5% and

15% respectively. These are by far the best determinations of the proper

motions of these two galaxies. The results have a number of unexpected

implications for the Milky Way-LMC-SMC system. The implied

three-dimensional velocities are larger than previously believed, and

are not much less than the escape velocity in a standard 10^12 solar

mass Milky Way dark halo. Orbit calculations suggest the Clouds may not

be bound to the Milky Way or may just be on their first passage, both of

which would be unexpected in view of traditional interpretations of the

Magellanic Stream. Alternatively, the Milky Way dark halo may be a

factor of two more massive than previously believed, which would be

surprising in view of other observational constraints. Also, the

relative velocity between the LMC and SMC is larger than expected,

leaving open the possibility that the Clouds may not be bound to each

other. To further verify and refine our results we now request an epoch

of WFPC2/PC data for the fields centered on 40 quasars that have at

least one epoch of ACS imaging. We request execution in snapshot mode,

as in our previous programs, to ensure the most efficient use of HST

resources. A third epoch of data of these fields will provide crucial

information to verify that there are no residual systematic effects in

our previous measurements. More importantly, it will increase the time

baseline from 2 to 5 yrs and will increase the number of fields with at

least two epochs of data. This will reduce our uncertainties

correspondingly, so that we can better address whether the Clouds are

indeed bound to each other and to the Milky Way. It will also allow us

to constrain the internal motions of various populations within the

Clouds, and will allow us to determine a distance to the LMC using

rotational parallax.

 

WFPC2 11231

 

Calibration of the WFPC2 HeII and [SII] Filters.

 

Observations of NGC 6720 (the Ring Nebula) will be used to determine the

calibration constants for the important emission-line filters that

isolate nebular HeII (F469N) and [SII] (F673N) emission. The pre-launch

calibrations are inadequate because of possible temporal changes and the

fact that these interference filters are used in a different

configuration from that of the ground calibration. The Ring Nebula is a

nearly ideal reference source as multiple 2.4"x4.0" samples have been

accurately measured spectro-photometrically and five of the six samples

can be imaged with one pointing of the HST. The method of derivation of

the calibration constants will be the same as previously employed to

calibrate the primary emission-line filters for the WFPC2 (F487N, F502N,

F656N, F658N) and ACS (F502N, F658N, F660N) using the Orion Nebula as a

reference source. However, Orion cannot be used for this calibration

because the targeted lines are weak ([SII]) or absent (HeII) and the

scattered-light continuum is strong. The Ring Nebula has strong HeII

emission in its middle, strong [SII] emission in its main ring, and a

weak (atomic only) continuum.

 

WFPC2 11233

 

Multiple Generations of Stars in Massive Galactic Globular Clusters

 

This is a follow-up to recent HST imaging of NGC 2808, which discovered

that its main sequence is triple, with three well-separated parallel

branches {Fig.~1}. Along with the double MS of Omega Centauri, this

challenges the long-held paradigm that globular clusters are simple,

single stellar populations. The cause of this main sequence multiplicity

in both clusters is likely to be differences in helium abundance, which

could play a fundamental role in the understanding of stellar

populations. We propose to image seven more of the most massive globular

clusters, to examine their main sequences for indications of splitting.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS:

11268 - GSACQ(1,2,1) failed, scan step limit exceeded on FGS 1

           GSACQ(1,2,1) at 114/18:16:55 failed due to scan step limit exceeded on

           FGS 1. No ESB messages were received, NICMOS 705 status buffer message

           (TDF down when a target acquisition SAM request is made) was posted at

           18:26:36.

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                         SCHEDULED      SUCCESSFUL   

FGS GSacq                08                   07       

FGS REacq                06                   06                                    

OBAD with Maneuver 28                    28             

 

SIGNIFICANT EVENTS: (None)