HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT      # 4599

 

PERIOD COVERED: UT April 28, 2008 (DOY 119)

 

OBSERVATIONS SCHEDULED

 

SIGNIFICANT EVENTS: (None)

 

FGS 11212

 

Filling the Period Gap for Massive Binaries

 

The current census of binaries among the massive O-type stars is

seriously incomplete for systems in the period range from years to

millennia because the radial velocity variations are too small and the

angular separations too close for easy detection. Here we propose to

discover binaries in this observational gap through a Faint Guidance

Sensor SNAP survey of relatively bright targets listed in the Galactic O

Star Catalog. Our primary goal is to determine the binary frequency

among those in the cluster/association, field, and runaway groups. The

results will help us assess the role of binaries in massive star

formation and in the processes that lead to the ejection of massive

stars from their natal clusters. The program will also lead to the

identification of new, close binaries that will be targets of long term

spectroscopic and high angular resolution observations to determine

their masses and distances. The results will also be important for the

interpretation of the spectra of suspected and newly identified binary

and multiple systems.

 

FGS 11214

 

HST/FGS Astrometric Search for Young Planets Around Beta Pic and AU Mic

 

Beta Pic and AU Mic are two nearby Vega-type debris disk stars. Both of

these disk systems have been spatially resolved in exquisite detail,

predominantly via the ACS coronagraph and WFPC-2 cameras onboard HST.

These images exhibit a wealth of morphological features which provide

compelling indirect evidence that these systems likely harbor

short-period planetary body{ies}. We propose to use the superlative

astrometric capabilities of HST/FGS to directly detect these planets,

hence provide the first direct planet detection in a Vega-type system

whose disk has been imaged at high spatial resolution.

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA calibration - CR Persistence Part 6

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non-standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science i

mages. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC3 11120

 

A Paschen-Alpha Study of Massive Stars and the ISM in the Galactic

Center

 

The Galactic center (GC) is a unique site for a detailed study of a

multitude of complex astrophysical phenomena, which may be common to

nuclear regions of many galaxies. Observable at resolutions

unapproachable in other galaxies, the GC provides an unparalleled

opportunity to improve our understanding of the interrelationships of

massive stars, young stellar clusters, warm and hot ionized gases,

molecular clouds, large scale magnetic fields, and black holes. We

propose the first large-scale hydrogen Paschen alpha line survey of the

GC using NICMOS on the Hubble Space Telescope. This survey will lead to

a high resolution and high sensitivity map of the Paschen alpha line

emission in addition to a map of foreground extinction, made by

comparing Paschen alpha to radio emission. This survey of the inner 75

pc of the Galaxy will provide an unprecedented and complete search for

sites of massive star formation. In particular, we will be able to (1)

uncover the distribution of young massive stars in this region, (2)

locate the surfaces of adjacent molecular clouds, (3) determine

important physical parameters of the ionized gas, (4) identify compact

and ultra-compact HII regions throughout the GC. When combined with

existing Chandra and Spitzer surveys as well as a wealth of other

multi-wavelength observations, the results will allow us to address such

questions as where and how massive stars form, how stellar clusters are

disrupted, how massive stars shape and heat the surrounding medium, and

how various phases of this medium are interspersed.

 

WFPC2 11022

 

WFPC2 Cycle 15 Decontaminations and Associated Observations

 

This proposal is for the WFPC2 decons. Also included are instrument

monitors tied to decons: photometric stability check, focus monitor,

pre- and post-decon internals {bias, intflats, kspots, & darks}, UV

throughput check, VISFLAT sweep, and internal UV flat check.

 

WFPC2 11130

 

AGNs with Intermediate-mass Black Holes: Testing the Black Hole-Bulge

Paradigm, Part II

 

The recent progress in the study of central black holes in galactic

nuclei has led to a general consensus that supermassive {10^6-10^9 solar

mass} black holes are closely connected with the formation and

evolutionary history of large galaxies, especially their bulge

component. Two outstanding issues, however, remain unresolved. Can

central black holes form in the absence of a bulge? And does the mass

function of central black holes extend below 10^6 solar masses?

Intermediate-mass black holes {<10^6 solar masses}, if they exist, may

offer important clues to the nature of the seeds of supermassive black

holes. Using the SDSS, our group has successfully uncovered a new

population of AGNs with intermediate-mass black holes that reside in

low-luminosity galaxies. However, very little is known about the

detailed morphologies or structural parameters of the host galaxies

themselves, including the crucial question of whether they have bulges

or not. Surprisingly, the majority of the targets of our Cycle 14 pilot

program have structural properties similar to dwarf elliptical galaxies.

The statistics from this initial study, however, are really too sparse

to reach definitive conclusions on this important new class of black

holes. We wish to extend this study to a larger sample, by using the

Snapshot mode to obtain WFPC2 F814W images from a parent sample of 175

AGNs with intermediate- mass black holes selected from our final SDSS

search. We are particularly keen to determine whether the hosts contain

bulges, and if so, how the fundamental plane properties of the host

depend on the mass of their central black holes. We will also

investigate the environment of this unique class of AGNs.

 

WFPC2 11178

 

Probing Solar System History with Orbits, Masses, and Colors of

Transneptunian Binaries

 

The recent discovery of numerous transneptunian binaries {TNBs} opens a

window into dynamical conditions in the protoplanetary disk where they

formed as well as the history of subsequent events which sculpted the

outer Solar System and emplaced them onto their present day heliocentric

orbits. To date, at least 47 TNBs have been discovered, but only about a

dozen have had their mutual orbits and separate colors determined,

frustrating their use to investigate numerous important scientific

questions. The current shortage of data especially cripples scientific

investigations requiring statistical comparisons among the ensemble

characteristics. We propose to obtain sufficient astrometry and

photometry of 23 TNBs to compute their mutual orbits and system masses

and to determine separate primary and secondary colors, roughly tripling

the sample for which this information is known, as well as extending it

to include systems of two near-equal size bodies. To make the most

efficient possible use of HST, we will use a Monte Carlo technique to

optimally schedule our observations.

 

WFPC2 11202

 

The Structure of Early-type Galaxies: 0.1-100 Effective Radii

 

The structure, formation and evolution of early-type galaxies is still

largely an open problem in cosmology: how does the Universe evolve from

large linear scales dominated by dark matter to the highly non-linear

scales of galaxies, where baryons and dark matter both play important,

interacting, roles? To understand the complex physical processes

involved in their formation scenario, and why they have the tight

scaling relations that we observe today {e.g. the Fundamental Plane}, it

is critically important not only to understand their stellar structure,

but also their dark-matter distribution from the smallest to the largest

scales. Over the last three years the SLACS collaboration has developed

a toolbox to tackle these issues in a unique and encompassing way by

combining new non-parametric strong lensing techniques, stellar

dynamics, and most recently weak gravitational lensing, with

high-quality Hubble Space Telescope imaging and VLT/Keck spectroscopic

data of early-type lens systems. This allows us to break degeneracies

that are inherent to each of these techniques separately and probe the

mass structure of early-type galaxies from 0.1 to 100 effective radii.

The large dynamic range to which lensing is sensitive allows us both to

probe the clumpy substructure of these galaxies, as well as their

low-density outer haloes. These methods have convincingly been

demonstrated, by our team, using smaller pilot-samples of SLACS lens

systems with HST data. In this proposal, we request observing time with

WFPC2 and NICMOS to observe 53 strong lens systems from SLACS, to obtain

complete multi-color imaging for each system. This would bring the total

number of SLACS lens systems to 87 with completed HST imaging and

effectively doubles the known number of galaxy-scale strong lenses. The

deep HST images enable us to fully exploit our new techniques, beat down

low-number statistics, and probe the structure and evolution of

early-type galaxies, not only with a uniform data-set an order of

magnitude larger than what is available now, but also with a fully

coherent and self-consistent methodological approach!

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS:

11282 - GSAcq(1,2,1) Loss of Lock while guiding

           Following a successful GSAcq (1,2,1), scheduled at 120/07:18:21, a Loss

           of Lock occurred while guiding under FGS 1 and 2 at 120/07:38:40.

           (QF1STOPF) stop flag indication set on FGS-1. P4TAKDAT (Take Data Flag)

           went down at that time, causing ACS 779 Status Buffer Messages ("Fold

           Mechanism Move Was Blocked") to occur at 120/07:38:40, 120/07:50:13,

           120/08:01:46. The spacecraft entered T2G mode. The TERM EXP was not

           scheduled until 120/08:15:52.

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                        SCHEDULED      SUCCESSFUL      FAILURE TIMES  

FGS GSacq                10                  10                    

FGS REacq                04                  04                                  

OBAD with Maneuver  28                  28                

LOSS of LOCK                                                    120/07:38:40z

 

SIGNIFICANT EVENTS: (None)