HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT      # 4608

 

PERIOD COVERED: 5am May 09 - 5am May 12, 2008 (DOY 130/0900z-133/0900z)

 

OBSERVATIONS SCHEDULED

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA calibration - CR Persistence Part 6

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non-standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science i

mages. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

WFPC2 11513

 

The afterglow and host galaxy of GRB 080319: the first "naked eye" burst

 

The optical flash from GRB 080319 reached a magnitude of about 5.5

within a few seconds of the start of the burst, making it the first

"naked eye" GRB. It's redshift has been determined as z=0.94 (about 7

billion light years distance) and hence it is by far the most distant

naked eye source known.

 

HST has a key role to play in helping study this event, by providing the

late time monitoring of the light curve and colour of the afterglow.

This will allow us to constrain any breaks which may indicate a

collimated outflow, to search for an underlying supernova component and

to reveal the nature of the host galaxy, and the location of the burst

within it.

 

Not surprisingly this object is attracting considerable attention both

in the professional astrophysical community and also in the general

public. We believe that HST observations of this GRB would be welcomed

by both of these communities.

 

NIC2 11341

 

Lower Luminosity AGNs at Cosmologically Interesting Redshifts: SEDs and

Accretion Rates of z~0.36 Seyferts

 

We propose a multiwavelength campaign to constrain the SEDs of Seyferts

at z~0.36. This epoch, corresponding to a look back time of 4 Gyrs, is

cosmologically interesting for studies of the coeval development of

black holes and their host galaxy bulges. Our sample, comprising 24

Seyferts, has unprecedented high quality Keck spectroscopy and HST

imaging already invested to extract host galaxy bulge properties,

estimate black hole masses, and separate nuclear and host optical

luminosities. To supplement and extend this successful program, we

request 93 ks of Chandra time (to measure the shape and power of the

AGN-only X-ray continuum), 11 hrs each of Spitzer and Gemini (to

constrain the dust temperature), and 7 orbits of HST (to determine the

nuclear luminosity for the final 7 objects).

 

NIC3 11334

 

NICMOS Cycle 16 Spectrophotometry

 

Observation of the three primary WD flux standards must be repeated to

refine the NICMOS absolute calibration and monitor for sensitivity

degradation. So far, NICMOS grism spectrophotometry is available for

only ~16 stars with good STIS spectra at shorter wavelengths. There are

more in the HST CALSPEC standard star data base with good STIS spectra

that would also become precise IR standards with NICMOS absolute SED

measurements. Monitoring the crucial three very red stars (M, L, T) for

variability and better S/N in the IR. Apparent variability was

discovered at shorter wavelengths during the ACS cross-calibration work

that revealed a ~2% discrepancy of the cool star fluxes with respect to

the hot primary WD standards. About a third of these stars are bright

enough to do in one orbit, the rest require 2 orbits.

 

NIC3 11331

 

NICMOS Cycle 16 Grism Calibration

 

A series of pointed NICMOS observations of the spectroscopic flux

calibrator P330E and two wavelength calibrators VY2-2 and HB12.

 

NIC1/NIC2/NIC3 11318

 

NICMOS Cycle 16 Multiaccum Darks

 

The purpose of this proposal is to monitor the dark current, read noise,

and shading profile for all three NICMOS detectors throughout the

duration of Cycle 16. This proposal is a slightly modified version of

proposal 10380 of cycle 13 and 9993 of cycle12 and is the same as Cycle

15. Covers the period from April 08 to November 08 (inclusive)

 

WFPC2 11312

 

The Local Cluster Substructure Survey {LoCuSS}: Deep Strong Lensing

Observations with WFPC2

 

LoCuSS is a systematic and detailed investigation of the mass,

substructure, and thermodynamics of 100 X-ray luminous galaxy clusters

at 0.15<z<0.3. The primary goal is to test our recent suggestion that

this population is dominated by dynamically immature disturbed clusters,

and that the observed mass-temperature relation suffers strong

structural segregation. If confirmed, this would represent a paradigm

shift in our observational understanding of clusters, that were hitherto

believed to be dominated by mature, undisturbed systems. We propose to

complete our successful Cycle 15 program {SNAP:10881} which prior to

premature termination had delivered robust weak-lensing detections in 17

clusters, and candidate strongly-lensed arcs in 11 of these 17. These

strong and weak lensing signals will give an accurate measure of the

total mass and structure of the dark matter distribution that we will

subsequently compare with X-ray and Sunyaev Zeldovich Effect

observables. The broader applications of our project include 1} the

calibration of mass-temperature and mass-SZE scaling relations which

will be critical for the calibration of proposed dark energy

experiments, and 2} the low redshift baseline study of the demographics

of massive clusters to aid interpretation of future high redshift {z>1}

cluster samples. To complete the all-important high resolution imaging

component of our survey, we request deep WFPC2 observations of 20

clusters through the F606W filter, for which wide-field weak-lensing

data are already available from our Subaru imaging program. The

combination of deep WFPC2 and Subaru data for these 20 clusters will

enable us to achieve the science program approved by the Cycle 15 TAC.

 

FGS 11212

 

Filling the Period Gap for Massive Binaries

 

The current census of binaries among the massive O-type stars is

seriously incomplete for systems in the period range from years to

millennia because the radial velocity variations are too small and the

angular separations too close for easy detection. Here we propose to

discover binaries in this observational gap through a Faint Guidance

Sensor SNAP survey of relatively bright targets listed in the Galactic O

Star Catalog. Our primary goal is to determine the binary frequency

among those in the cluster/association, field, and runaway groups. The

results will help us assess the role of binaries in massive star

formation and in the processes that lead to the ejection of massive

stars from their natal clusters. The program will also lead to the

identification of new, close binaries that will be targets of long term

spectroscopic and high angular resolution observations to determine

their masses and distances. The results will also be important for the

interpretation of the spectra of suspected and newly identified binary

and multiple systems.

 

FGS 11210

 

The Architecture of Exoplanetary Systems

 

Are all planetary systems coplanar? Concordance cosmogony makes that

prediction. It is, however, a prediction of extrasolar planetary system

architecture as yet untested by direct observation for main sequence

stars other than the Sun. To provide such a test, we propose to carry

out FGS astrometric studies on four stars hosting seven companions. Our

understanding of the planet formation process will grow as we match not

only system architecture, but formed planet mass and true distance from

the primary with host star characteristics for a wide variety of host

stars and exoplanet masses. We propose that a series of FGS astrometric

observations with demonstrated 1 millisecond of arc per-observation

precision can establish the degree of coplanarity and component true

masses for four extrasolar systems: HD 202206 {brown dwarf+planet}; HD

128311 {planet+planet}, HD 160691 = mu Arae {planet+planet}, and HD

222404AB = gamma Cephei {planet+star}. In each case the companion is

identified as such by assuming that the minimum mass is the actual mass.

For the last target, a known stellar binary system, the companion orbit

is stable only if coplanar with the AB binary orbit.

 

NIC2 11208

 

The co-evolution of spheroids and black holes in the last six billion

years

 

The masses of giant black holes are correlated with the luminosities,

masses, and velocity dispersions of the bulges of their host galaxies.

This empirical correlation of phenomena on widely different scales {from

pcs to kpcs} suggests that the formation and evolution of galaxies and

central black holes are closely linked. In Cycle 13, we have started a

campaign to map directly the co-evolution of spheroids and black-holes

by measuring in observationally favorable redshift windows the empirical

correlations connecting their properties. By focusing on Seyfert 1s,

where the nucleus and the stars contribute comparable fractions of total

light, black hole mass and bulge dispersion are obtained from Keck

spectroscopy. HST is required for accurate measurement of the non

stellar AGN continuum, the morphology of the galaxy, and the structural

parameters of the bulge. The results at z=0.36 indicate a surprisingly

fast evolution of bulges in the past 4 Gyrs {significant at the 95%CL},

in the sense that bulges were significantly smaller for a given black

hole mass. Also, the large fraction of mergers and disturbed galaxies

{4+2 out of 20} identifies gas-rich mergers as the mechanisms

responsible for bulge-growth. Going to higher redshift -- where

evolutionary trends should be stronger -- is needed to confirm these

tantalizing results. We propose therefore to push our investigation to

the next suitable redshift window z=0.57 {lookback-time 6 Gyrs}. Fifteen

objects are the minimum number required to map the evolution of the

empirical correlations between bulge properties and black- hole mass,

and to achieve a conclusive detection of evolution {>99%CL}.

 

WFPC2 11202

 

The Structure of Early-type Galaxies: 0.1-100 Effective Radii

 

The structure, formation and evolution of early-type galaxies is still

largely an open problem in cosmology: how does the Universe evolve from

large linear scales dominated by dark matter to the highly non-linear

scales of galaxies, where baryons and dark matter both play important,

interacting, roles? To understand the complex physical processes

involved in their formation scenario, and why they have the tight

scaling relations that we observe today {e.g. the Fundamental Plane}, it

is critically important not only to understand their stellar structure,

but also their dark-matter distribution from the smallest to the largest

scales. Over the last three years the SLACS collaboration has developed

a toolbox to tackle these issues in a unique and encompassing way by

combining new non-parametric strong lensing techniques, stellar

dynamics, and most recently weak gravitational lensing, with

high-quality Hubble Space Telescope imaging and VLT/Keck spectroscopic

data of early-type lens systems. This allows us to break degeneracies

that are inherent to each of these techniques separately and probe the

mass structure of early-type galaxies from 0.1 to 100 effective radii.

The large dynamic range to which lensing is sensitive allows us both to

probe the clumpy substructure of these galaxies, as well as their

low-density outer haloes. These methods have convincingly been

demonstrated, by our team, using smaller pilot-samples of SLACS lens

systems with HST data. In this proposal, we request observing time with

WFPC2 and NICMOS to observe 53 strong lens systems from SLACS, to obtain

complete multi-color imaging for each system. This would bring the total

number of SLACS lens systems to 87 with completed HST imaging and

effectively doubles the known number of galaxy-scale strong lenses. The

deep HST images enable us to fully exploit our new techniques, beat down

low-number statistics, and probe the structure and evolution of

early-type galaxies, not only with a uniform data-set an order of

magnitude larger than what is available now, but also with a fully

coherent and self-consistent methodological approach!

 

NIC3 11195

 

Morphologies of the Most Extreme High-Redshift Mid-IR-luminous Galaxies

II: The `Bump' Sources

 

The formative phase of some of the most massive galaxies may be

extremely luminous, characterized by intense star- and AGN-formation.

Till now, few such galaxies have been unambiguously identified at high

redshift, and thus far we have been restricted to studying the

low-redshift ultraluminous infrared galaxies as possible analogs. We

have recently discovered a sample of objects which may indeed represent

this early phase in galaxy formation, and are undertaking an extensive

multiwavelength study of this population. These objects are optically

extremely faint {R>26} but nevertheless bright at mid-infrared

wavelengths {F[24um] > 0.5 mJy}. Mid-infrared spectroscopy with

Spitzer/IRS reveals that they have redshifts z~2, implying luminosities

~1E13 Lsun. Their mid-IR SEDs fall into two broad, perhaps overlapping,

categories. Sources with brighter F[24um] exhibit power-law SEDs and SiO

absorption features in their mid-IR spectra characteristic of AGN,

whereas those with fainter F[24um] show a "bump" characteristic of the

redshifted 1.6um peak from a stellar population, and PAH emission

characteristic of starformation. We have begun obtaining HST images of

the brighter sources in Cycle 15 to obtain identifications and determine

kpc-scale morphologies for these galaxies. Here, we aim to target the

second class {the "bump" sources} with the goal of determining if these

constitute morphologically different objects, or simply a "low-AGN"

state of the brighter class. The proposed observations will help us

determine whether these objects are merging systems, massive obscured

starbursts {with obscuration on kpc scales!} or very reddened {locally

obscured} AGN hosted by intrinsically low-luminosity galaxies.

 

NIC3 11174

 

A Spitzer/X-ray candidate cluster at z>2: NICMOS imaging

 

We propose deep H-band imaging with NICMOS of a remarkable z>2 cluster

of galaxy candidate. Over a 1000 arcmin^2 field imaged with Spitzer's

IRAC and MIPS we have discovered a compact (<30'' diameter)

concentration of extremely red galaxies with a factor of >40 overdensity

over the adjacent field. Among these galaxies for which we can derive

meaningful photometric redshifts, 17 are consistent with zphot=2-2.5,

making very likely that the concentrationis is a real cluster at such

high redshift. This is further supported by a 3.5 sigma detection of

extended X-Ray emission on Newton-XMM data, by a likely color-magnitude

sequence of red galaxies, and by the presence of a giant galaxy

consistent with a BCG at the cluster redshift. While spectroscopic

confirmation of the cluster might result prohibitive with current

facilities, HST high resolution imaging will allow us to gain crucial

information for the study and scientific exploitation of this hot gas

hosting, record high-z cluster of galaxies. The HST high resolution

observations will allow us to unveil the rest frame optical morphologies

of the galaxies and confirm the presence of ellipticals in the

structure, detect and characterize the color-magnitude relation, measure

their effective radii and construct their Kormendy relation for the

passively evolving subsample, improve the photometric redshift estimates

to confirm the real cluster nature of the structure, estimate stellar

masses and check for possible deviations from the local mass-size

relation, search for mergers and AGNs, and establish a cluster benchmark

for cluster-field comparisons at this highest redshift.

 

ACS/SBC 11158

 

HST Imaging of UV emission in Quiescent Early-type Galaxies

 

We have constructed a sample of early type galaxies at z~0.1 that have

blue UV-optical colors, yet also show no signs of optical emission, or

extended blue light. We have cross-correlated the SDSS catalog and the

Galaxy Evolution Explorer Medium Imaging Survey to select a sample of

galaxies where this UV emission is strongest. The origin of the UV

rising flux in these galaxies continues to be debated, and the

possibility that some fraction of these galaxies may be experiencing low

levels of star formation cannot be excluded. There is also a possibility

that low level AGN activity {as evidenced by a point source} is

responsible We propose to image the UV emission using the HST/SBC and to

explore the morphology of the UV emission relative to the optical light.

 

NIC2/WFPC2 11142

 

Revealing the Physical Nature of Infrared Luminous Galaxies at 0.3<z<2.7

Using HST and Spitzer

 

We aim to determine physical properties of IR luminous galaxies at

0.3<z<2.7 by requesting coordinated HST/NIC2 and MIPS 70um observations

of a unique, 24um flux-limited sample with complete Spitzer mid-IR

spectroscopy. The 150 sources investigated in this program have S{24um}

> 0.8mJy and their mid-IR spectra have already provided the majority

targets with spectroscopic redshifts {0.3<z<2.7}. The proposed

150~orbits of NIC2 and 66~hours of MIPS 70um will provide the physical

measurements of the light distribution at the rest-frame ~8000A and

better estimates of the bolometric luminosity. Combining these

parameters together with the rich suite of spectral diagnostics from the

mid-IR spectra, we will {1} measure how common mergers are among LIRGs

and ULIRGs at 0.3<z<2.7, and establish if major mergers are the drivers

of z>1 ULIRGs, as in the local Universe. {2} study the co-evolution of

star formation and blackhole accretion by investigating the relations

between the fraction of starburst/AGN measured from mid-IR spectra vs.

HST morphologies, L{bol} and z. {3} obtain the current best estimates of

the far-IR emission, thus L{bol} for this sample, and establish if the

relative contribution of mid-to-far IR dust emission is correlated with

morphology {resolved vs. unresolved}.

 

WFPC2 11113

 

Binaries in the Kuiper Belt: Probes of Solar System Formation and

Evolution

 

The discovery of binaries in the Kuiper Belt and related small body

populations is powering a revolutionary step forward in the study of

this remote region. Three quarters of the known binaries in the Kuiper

Belt have been discovered with HST, most by our snapshot surveys. The

statistics derived from this work are beginning to yield surprising and

unexpected results. We have found a strong concentration of binaries

among low-inclination Classicals, a possible size cutoff to binaries

among the Centaurs, an apparent preference for nearly equal mass

binaries, and a strong increase in the number of binaries at small

separations. We propose to continue this successful program in Cycle 16;

we expect to discover at least 13 new binary systems, targeted to

subgroups where these discoveries can have the greatest impact.

 

NIC3 11107

 

Imaging of Local Lyman Break Galaxy Analogs: New Clues to Galaxy

Formation in the Early Universe

 

We have used the ultraviolet all-sky imaging survey currently being

conducted by the Galaxy Evolution Explorer {GALEX} to identify for the

first time a rare population of low-redshift starbursts with properties

remarkably similar to high-redshift Lyman Break Galaxies {LBGs}. These

"compact UV luminous galaxies" {UVLGs} resemble LBGs in terms of size,

SFR, surface brightness, mass, metallicity, kinematics, dust, and color.

The UVLG sample offers the unique opportunity of investigating some very

important properties of LBGs that have remained virtually inaccessible

at high redshift: their morphology and the mechanism that drives their

star formation. Therefore, in Cycle 15 we have imaged 7 UVLGs using ACS

in order to 1} characterize their morphology and look for signs of

interactions and mergers, and 2} probe their star formation histories

over a variety of timescales. The images show a striking trend of small-

scale mergers turning large amounts of gas into vigorous starbursts {a

process referred to as dissipational or "wet" merging}. Here, we propose

to complete our sample of 31 LBG analogs using the ACS/SBC F150LP {FUV}

and WFPC2 F606W {R} filters in order to create a statistical sample to

study the mechanism that triggers star formation in UVLGs and its

implications for the nature of LBGs. Specifically, we will 1} study the

trend between galaxy merging and SFR in UVLGs, 2} artificially redshift

the FUV images to z=1-4 and compare morphologies with those in similarly

sized samples of LBGs at the same rest-frame wavelengths in e.g. GOODS,

UDF, and COSMOS, 3} determine the presence and morphology of significant

stellar mass in "pre- burst" stars, and 4} study their immediate

environment. Together with our Spitzer {IRAC+MIPS}, GALEX, SDSS and

radio data, the HST observations will form a unique union of data that

may for the first time shed light on how the earliest major episodes of

star formation in high redshift galaxies came about. This proposal was

adapted from an ACS HRC+WFC proposal to meet the new Cycle 16 observing

constraints, and can be carried out using the ACS/SBC and WFPC2 without

compromising our original science goals.

 

WFPC2 11102

 

HST as a Jovian Climate Satellite

 

In the past year, there have been striking changes in Jupiter's

atmosphere. Among these are the Oval BA's change from white to red, two

new dark Disturbances in the southern hemisphere, and a 30% change

(since 1997) in the aspect ratio of the potential vorticity anomaly of

the GRS (not just its associated clouds), as we determined from

high-accuracy velocities extracted from HST images. The determination of

high-accuracy velocities requires both high-resolution imaging by HST

(or flybys), and our novel adaptation of Correlation Image Velocimetry

(CIV), a technique that has far greater accuracy than the traditional

method (of identifying velocity tie-points by hand). Our proposed

observations will test the hypothesis that these changes in Jupiter

validate our 2004 prediction: that the merger of the 3 White Ovals in

1998-2000 would lead to climate change on Jupiter. The key is to

determine, by indirect means, the temperature at the base of the weather

layer, a quantity that cannot be observed directly at any wavelength.

The new Red Oval BA's velocities will be used to test our finding that

the color change is due to global temperature changes. The change in the

GRS's aspect ratio suggests a large (at least 20%) change in the shear

of the local velocity since 1997. The latter can be investigated only by

determining Jupiter's current zonal winds.

 

WFPC2 11029

 

WFPC2 CYCLE 15 Intflat Linearity Check and Filter Rotation Anomaly

Monitor

 

Intflat observations will be taken to provide a linearity check: the

linearity test consists of a series of intflats in F555W, in each gain

and each shutter. A combination of intflats, visflats, and earthflats

will be used to check the repeatability of filter wheel motions.

{Intflat sequences tied to decons, visits 1-18 in prop 10363, have been

moved to the cycle 15 decon proposal xxxx for easier scheduling.} Note:

long-exposure WFPC2 intflats must be scheduled during ACS anneals to

prevent stray light from the WFPC2 lamps from contaminating long ACS

external exposures.

 

WFPC2 10896

 

An Efficient ACS Coronagraphic Survey for Debris Disks around Nearby

Stars

 

We propose to finish our Cycle 11 optical survey for nearby debris disks

using the ACS/HRC coronagraph. Out of 43 orbits originally proposed for

the survey, 23 orbits were allocated, leading to a survey of 22 stars,

from which two new debris disks were imaged for the first time. Our

analysis of the initial survey gives an empirical estimate for the

detection rate of debris disks relative to heliocentric distance and

dust optical depth. Our target list for Cycle 15 is now optimized to

yield more frequent disk detections. Likewise our observing strategy is

improved to maximize sensitivity per telescope orbit allocated.

Therefore we present the most efficient survey possible. The scientific

motivation is to obtain scattered light images of previously unresolved

debris disks to determine their viewing geometry and physical

architecture, both of which may characterize the underlying planetary

system. We choose 25 debris disk targets for which we predict a

detection rate of 25% ? 5%. Four targets have extrasolar planets from

which the viewing geometry revealed by a disk detection will resolve the

v sin{i} ambiguity in the planet masses. These targets present the

remarkable opportunity of finally seeing a debris disk in system with

known planets.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS:

11299 - GSACQ (1,2,1) failed while LOS

           GSACQ(1,2,1) at 133/05:45:25 failed to RGA control with QF2STOPF and

           QSTOP flags set. No other flags were seen. Vehicle was LOS at time of

           failure. #44 commands did change since previous acquisition. 486 ESB

           message "1808" (TxG FHST Sanity Check Failed) was observed at AOS. OBAD

           prior to acquisition had RSS error of 14.12 arcseconds. Further

           information after engineering recorder dump.

 

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                       SCHEDULED      SUCCESSFUL  

FGS GSacq               29                  28         

FGS REacq               13                  13                  

OBAD with Maneuver 84                  83                   

 

SIGNIFICANT EVENTS: (None)