HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT       #4666

 

PERIOD COVERED: 5am August 1 - 5am August 4, 2008 (DOY 214/0900z-217/0900z)

 

OBSERVATIONS SCHEDULED

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA Calibration - CR Persistence Part 6

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non-standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science i

mages. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

WFPC2 11797

 

Supplemental WFPC2 CYCLE 16 Intflat Linearity Check and Filter Rotation

Anomaly Monitor

 

Supplemental observations to 11029, to cover period from Aug 08 to SM4.

Intflat observations will be taken to provide a linearity check: the

linearity test consists of a series of intflats in F555W, in each gain

and each shutter. A combination of intflats, visflats, and earthflats

will be used to check the repeatability of filter wheel motions.

(Intflat sequences tied to decons, visits 1-18 in prop 10363, have been

moved to the cycle 15 decon proposal 11022 for easier scheduling.)

 

Note: long-exposure WFPC2 intflats must be scheduled during ACS anneals

to prevent stray light from the WFPC2 lamps from contaminating long ACS

external exposures.

 

Note: These are supplemental observations to cover June to SM4 (oct 8

'08) + 6 months.

 

WFPC2 11794

 

Cycle 16 Visible Earth Flats

 

This proposal monitors flatfield stability. This proposal obtains

sequences of Earth streak flats to construct high quality flat fields

for the WFPC2 filter set. These flat fields will allow mapping of the

OTA illumination pattern and will be used in conjuction with previous

internal and external flats to generate new pipeline superflats. These

Earth flats will complement the Earth flat data obtained during cycles

4-15.

 

ACS/SBC 11791

 

The Wavelength Dependence of Accretion Disk Structure

 

We can now routinely measure the size of quasar accretion disks using

gravitational microlensing of lensed quasars. The next step to testing

accretion disk models is to measure the size of accretion disks as a

function of wavelength, particularly at the UV and X-ray wavelengths

that should probe the inner, strong gravity regime. Here we focus on two

four-image quasar lenses that already have optical (R band) and X-ray

size measurements using microlensing. We will combine the HST

observations with ground-based monitoring to measure the disk size as a

function of wavelength from the near-IR to the UV. We require HST to

measure the image flux ratios in the ultraviolet continuum near the

Lyman limit of the quasars. The selected targets have estimated black

hole masses that differ by an order of magnitude, and we should find

wavelength scalings for the two systems that are very different because

the Blue/UV wavelengths should correspond to parts of the disk near the

inner edge for the high mass system but not in the low mass system. The

results will be modeled using a combination of simple thin disk models

and complete relativistic disk models. While requiring only 18 orbits,

success for one system requires observations in both Cycles 16 and 17.

 

WFPC2 11544

 

The Dynamical Legacy of Star Formation

 

We propose to use WFPC2 to conduct a wide-field imaging survey of the

young cluster IC348. This program, in combination with archival HST

observations, will allow us to measure precise proper motions for

individual cluster members, characterizing the intra-cluster velocity

dispersion and directly studying the dynamical signatures of star

formation and early cluster evolution. Our projected astrometric

precision (~1 mas in each epoch) will allow us to calculate individual

stellar velocities to unprecedented precision (<0.5 mas/yr; <1 km/s) and

directly relate these velocities to observed spatial substructure within

the cluster. This survey will also allow us to probe small-scale star

formation physics by searching for high-velocity stars ejected from

decaying multiple systems, expanding our knowledge of multiplicity in

dense environments, and identifying new substellar and planetary-mass

cluster members based on kinematic membership tests.

 

FGS 11210

 

The Architecture of Exoplanetary Systems

 

Are all planetary systems coplanar? Concordance cosmogony makes that

prediction. It is, however, a prediction of extrasolar planetary system

architecture as yet untested by direct observation for main sequence

stars other than the Sun. To provide such a test, we propose to carry

out FGS astrometric studies on four stars hosting seven companions. Our

understanding of the planet formation process will grow as we match not

only system architecture, but formed planet mass and true distance from

the primary with host star characteristics for a wide variety of host

stars and exoplanet masses. We propose that a series of FGS astrometric

observations with demonstrated 1 millisecond of arc per-observation

precision can establish the degree of coplanarity and component true

masses for four extrasolar systems: HD 202206 {brown dwarf+planet}; HD

128311 {planet+planet}, HD 160691 = mu Arae {planet+planet}, and HD

222404AB = gamma Cephei {planet+star}. In each case the companion is

identified as such by assuming that the minimum mass is the actual mass.

For the last target, a known stellar binary system, the companion orbit

is stable only if coplanar with the AB binary orbit.

 

WFPC2 11206

 

At the Cradle of the Milky Way: Formation of the Most Massive Field Disk

Galaxies at z>1

 

We propose to obtain 2 orbit WFPC2 F814W images of a sample of the 15

most massive galaxies found at $1 < z < 1.3$. These were culled from

over 20,000 Keck spectra collected as part of DEEP and are unique among

high redshift massive galaxy samples in being kinematically selected.

Through a recent HST NICMOS-2 imaging program {GO-10532}, we have

confirmed that these galaxies have regular stellar disks, and their

emission line kinematics are not due to gradients from merging

components. These potentially very young galaxies are likely precursors

to massive local disks, assuming no further merging. The proposed WFPC2

and existing NIC-2 data provide colors, stellar masses, and ages of

bulge and disk subcomponents, to assess whether old stellar bulges and

disks are in place at that time or still being built, and constrain

their formation epochs. Finally, this sample will yield the first

statistically significant results on the $z > 1$ evolution of the

size-velocity-luminosity scaling relations, for massive galaxies at

different wavelengths, and constrain whether this evolution reflects

stellar mass growth, or passive evolution, of either bulge or disk

components.

 

WFPC2 11203

 

A Search for Circumstellar Disks and Planetary-Mass Companions around

Brown Dwarfs in Taurus

 

During a 1-orbit program in Cycle 14, we used WFPC2 to obtain the first

direct image of a circumstellar disk around a brown dwarf. These data

have provided fundamental new constraints on the formation process of

brown dwarfs and the properties of their disks. To search for additional

direct detections of disks around brown dwarfs and to search for

planetary-mass companions to these objects, we propose a WFPC2 survey of

32 brown dwarfs in the Taurus star-forming region.

 

WFPC2 11178

 

Probing Solar System History with Orbits, Masses, and Colors of

Transneptunian Binaries

 

The recent discovery of numerous transneptunian binaries {TNBs} opens a

window into dynamical conditions in the protoplanetary disk where they

formed as well as the history of subsequent events which sculpted the

outer Solar System and emplaced them onto their present day heliocentric

orbits. To date, at least 47 TNBs have been discovered, but only about a

dozen have had their mutual orbits and separate colors determined,

frustrating their use to investigate numerous important scientific

questions. The current shortage of data especially cripples scientific

investigations requiring statistical comparisons among the ensemble

characteristics. We propose to obtain sufficient astrometry and

photometry of 23 TNBs to compute their mutual orbits and system masses

and to determine separate primary and secondary colors, roughly tripling

the sample for which this information is known, as well as extending it

to include systems of two near-equal size bodies. To make the most

efficient possible use of HST, we will use a Monte Carlo technique to

optimally schedule our observations.

 

NIC2 11166

 

The Mass-dependent Evolution of the Black Hole-Bulge Relations

 

In the local universe, the masses of giant black holes are correlated

with the luminosities, masses and velocity dispersions of their host

galaxy bulges. This indicates a surprisingly close connection between

the evolution of galactic nuclei (on parsec scales) and of stars on kpc

scales. A key observational test of proposed explanations for these

correlations is to measure how they have evolved over cosmic time. Our

ACS imaging of 20 Seyfert 1 galaxies at z=0.37 showed them to have

smaller bulges (by a factor of 3) for a given central black hole mass

than is found in galaxies in the present-day universe. However, since

all our sample galaxies had black hole masses in the range 10^8.0--8.5

Msun, we could only measure the OFFSET in black hole mass to bulge

luminosity ratios from the present epoch. By extending this study to

black hole masses another factor of 10 lower, we propose to determine

the full CORRELATION of black hole mass with host galaxy properties at a

lookback time of 4 Gyrs and to test mass-dependency of the evolution. We

have selected 14 Seyfert galaxies from SDSS DR5 whose narrow Hbeta

emission lines (and estimated nuclear luminosities) imply that they have

black hole masses around 10^7 Msuns. We will soon complete our Keck

spectroscopic measures of their bulge velocity dispersions. We need a

1-orbit NICMOS image of each galaxy to separate its nonstellar

luminosity from its bulge and disk. This will allow us to make the first

determination of the full black hole/bulge relations at z=0.37 (e.g. M-L

and M-sigma), as well as a test of whether active galaxies obey the

Fundamental Plane relation at that epoch.

 

NIC2/WFPC2 11142

 

Revealing the Physical Nature of Infrared Luminous Galaxies at 0.3<z<2.7

Using HST and Spitzer

 

We aim to determine physical properties of IR luminous galaxies at

0.3<z<2.7 by requesting coordinated HST/NIC2 and MIPS 70um observations

of a unique, 24um flux-limited sample with complete Spitzer mid-IR

spectroscopy. The 150 sources investigated in this program have S{24um}

> 0.8mJy and their mid-IR spectra have already provided the majority

targets with spectroscopic redshifts {0.3<z<2.7}. The proposed

150~orbits of NIC2 and 66~hours of MIPS 70um will provide the physical

measurements of the light distribution at the rest-frame ~8000A and

better estimates of the bolometric luminosity. Combining these

parameters together with the rich suite of spectral diagnostics from the

mid-IR spectra, we will {1} measure how common mergers are among LIRGs

and ULIRGs at 0.3<z<2.7, and establish if major mergers are the drivers

of z>1 ULIRGs, as in the local Universe. {2} study the co-evolution of

star formation and blackhole accretion by investigating the relations

between the fraction of starburst/AGN measured from mid-IR spectra vs.

HST morphologies, L{bol} and z. {3} obtain the current best estimates of

the far-IR emission, thus L{bol} for this sample, and establish if the

relative contribution of mid-to-far IR dust emission is correlated with

morphology {resolved vs. unresolved}.

 

NIC2 11135

 

Extreme Makeovers: Tracing the Transformation of Massive Galaxies at

z~2.5

 

To obtain a full spectroscopic census of the universe at z~2.5 we have

conducted a near-infrared spectroscopic survey for K-selected galaxies.

We found that, in contrast to the local universe, massive high-redshift

galaxies span a wide range of properties, varying from (dusty) star

burst to "red and dead" galaxies. This may imply that massive galaxies

transform from star-forming to quiescent galaxies in the targeted

redshift range. To understand whether the 9 quiescent galaxies in our

sample are the progenitors of local elliptical, we are observing them in

the current cycle with NIC2. For cycle 16 we propose to complete our

sample of massive z~2.5 galaxies and image the remaining 10 galaxies,

which all have emission lines. Based on emission-line diagnostics, 6 of

these galaxies are identified as star-forming objects and 4 harbor an

active galactic nucleus. The goals are to 1) determine whether star

formation in massive z~2.5 galaxies takes place in disks or is triggered

by merger activity, 2) derive the contribution of AGNs to the rest-frame

optical emission, and 3) test whether the morphologies are consistent

with the idea that the star-forming galaxies, AGNs, and quiescent

galaxies represent subsequent phases of an evolutionary sequence. The

combination of both programs will provide the first morphological study

of a spectroscopically confirmed massive galaxy sample at z~2.5.

 

WFPC2 11129

 

The Star Formation History of the Fornax Dwarf Spheroidal Galaxy

 

The Fornax dwarf spheroidal galaxy is one of the most luminous dwarf

satellites of the Milky Way. It is unusual in many ways: it hosts 5

globular clusters, shows some relatively young stars, and has faint

sub-structures which have been interpreted as signs of recent

interactions. It is thus of great interest to learn the complete star

formation history {SFH} of Fornax to establish a link between its

evolutionary path and the predictions from numerical simulations, as a

test of our understanding of dwarf galaxy evolution. Yet many questions

remain open. Is the old stellar population made up of stars formed in a

very early burst, perhaps before the epoch of re- ionization, or the

result of a more continuous star formation between 13 and 9 Gyr ago ?

How quickly did Fornax increase its metallicity during its initial

assembly and during subsequent episodes of star formation ? Are

accretion episodes required to explain the age-metallicity history of

Fornax ? However, there has never been a comprehensive study of the

global SFH of the Fornax field based on data of sufficient depth to

unambiguously measure the age mixture of the stellar populations and

their spatial variation. We propose to use the WFPC2 to obtain very deep

images in several fields across the central region of Fornax in order to

reach the oldest main-sequence turnoffs. The number of fields is

determined by the need to measure the SFH over different regions with

distinct kinematics and metallicity. The resolution achievable with HST

is crucial to answer these questions because, to derive the age

distribution of the oldest stars, we are interested in I magnitude

differences of the order 0.2 mag in crowded fields at V=24.5. We will

directly measure the time variation in star-formation rate over the

entire galaxy history, from first stars coeval with the Milky Way halo

to the youngest populations 200 Myr ago. The combination of detailed CMD

analysis with WFPC2 with our existing metallicity and kinematic

information will allow us to trace out the early phases of its

evolution.

 

WFPC2 11103

 

A Snapshot Survey of The Most Massive Clusters of Galaxies

 

We propose the continuation of our highly successful SNAPshot survey of

a sample of 125 very X-ray luminous clusters in the redshift range

0.3-0.7. As demonstrated by the 25 snapshots obtained so far in Cycle14

and Cycle15 these systems frequently exhibit strong gravitational

lensing as well as spectacular examples of violent galaxy interactions.

The proposed observations will provide important constraints on the

cluster mass distributions, the physical nature of galaxy-galaxy and

galaxy-gas interactions in cluster cores, and a set of optically bright,

lensed galaxies for further 8-10m spectroscopy. All of our primary

science goals require only the detection and characterization of

high-surface-brightness features and are thus achievable even at the

reduced sensitivity of WFPC2. Because of their high redshift and thus

compact angular scale our target clusters are less adversely affected by

the smaller field of view of WFPC2 than more nearby systems.

Acknowledging the broad community interest in this sample we waive our

data rights for these observations. Due to a clerical error at STScI our

approved Cycle15 SNAP program was barred from execution for 3 months and

only 6 observations have been performed to date - reinstating this SNAP

at Cycle16 priority is of paramount importance to reach meaningful

statistics.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS:

11423 - GSAcq (1,2,1) failed to RGA Hold due to QF1STOPF flag on FGS-1

           At 216/20:20:02 GSAcq (1,2,1) scheduled from 217/20:17:25 - 20:24:46

           failed to RGA Hold due to stop flags QF1STOPF and QSTOP on FGS 1.

 

           Possible observations affected: WFPC2 Proposal 11142, Observation 132 -

           133 NICMOS Proposal 8795, Observation 72.

 

 

           At 216/21:56:13 REAcq (1,2,1) scheduled from 216/21:53:17 - 22:00:38

           failed due to QF1STOPF and QSTOP flags on FGS 1.

 

           Possible observations affected: WFPC Proposal 11142, Observation 134 -

           135 NICMOS Proposal 11142, Observation 73 - 74.

 

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                        SCHEDULED      SUCCESSFUL

FGS GSacq                29                  28     

FGS REacq                15                  14  

OBAD with Maneuver 84                   84           

 

SIGNIFICANT EVENTS: (None)