HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT      #4669

 

PERIOD COVERED: 5am August 6 - 5am August 7, 2008 (DOY 219/0900z-220/0900z)

 

OBSERVATIONS SCHEDULED

 

FGS 11213

 

Distances to Eclipsing M Dwarf Binaries

 

We propose HST FGS observations to measure accurate distances of 5

nearby M dwarf eclipsing binary systems, from which model-independent

luminosities can be calculated. These objects have either poor or no

existing parallax measurements. FGS parallax determinations for these

systems, with their existing dynamic masses determined to better than

0.5%, would serve as model-independent anchor points for the low-mass

end of the mass-luminosity diagram.

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA Calibration - CR Persistence Part 6

 

A new procedure proposed to alleviate the CR-persistence problem of

NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS Cameras. The POST-SAA darks will be non-standard

reference files available to users with a USEAFTER date/time mark. The

keyword 'USEAFTER=date/time' will also be added to the header of each

POST-SAA DARK frame. The keyword must be populated with the time, in

addition to the date, because HST crosses the SAA ~8 times per day so

each POST-SAA DARK will need to have the appropriate time specified, for

users to identify the ones they need. Both the raw and processed images

will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS

science/calibration observations started within 50 minutes of leaving an

SAA will need such maps to remove the CR persistence from the science i

mages. Each observation will need its own CRMAP, as different SAA

passages leave different imprints on the NICMOS detectors.

 

NIC2 11101

 

The Relevance of Mergers for Fueling AGNs: Answers from QSO Host

Galaxies

 

The majority of QSOs are known to reside in centers of galaxies that

look like ellipticals. Numerical simulations have shown that remnants of

galaxy mergers often closely resemble elliptical galaxies. However, it

is still strongly debated whether the majority of QSO host galaxies are

indeed the result of relatively recent mergers or whether they are

completely analogous to inactive ellipticals to which nothing

interesting has happened recently. To address this question, we recently

obtained deep HST ACS images for five QSO host galaxies that were

classified morphologically as ellipticals {GO-10421}. This pilot study

revealed striking signs of tidal interactions such as ripples, tidal

tails, and warped disks that were not detected in previous studies. Our

observations show that at least some "elliptical" QSO host galaxies are

the products of relatively recent merger events rather than old galaxies

formed at high redshift. However, the question remains whether the host

galaxies of classical QSOs are truly distinct from inactive ellipticals

and whether there is a connection between the merger events we detect

and the current nuclear activity. We must therefore place our results

into a larger statistical context. We are currently conducting an HST

archival study of inactive elliptical galaxies {AR- 10941} to form a

control sample. We now propose to obtain deep HST/WFPC2 images of 13

QSOs whose host galaxies are classified as normal ellipticals. Comparing

the results for both samples will help us determine whether classical

QSOs reside in normal elliptical galaxies or not. Our recent pilot study

of five QSOs indicates that we can expect exciting results and deep

insights into the host galaxy morphology also for this larger sample of

QSOs. A statistically meaningful sample will help us determine the true

fraction of QSO hosts that suffered strong tidal interactions and thus,

whether a merger is indeed a requirement to trigger nuclear activity in

the most luminous AGNs. In addition to our primary science observations

with WFPC2, we will obtain NICMOS3 parallel observations with the

overall goal to select and characterize galaxy populations at high

redshifts. The imaging will be among the deepest NICMOS images: These

NICMOS images are expected to go to a limit a little over 1 magnitude

brighter than HUDF-NICMOS data, but over 13 widely separated fields,

with a total area about 1.5 times larger than HUDF- NICMOS. This

separation means that the survey will tend to average out effects of

cosmic variance. The NICMOS3 images will have sufficient resolution for

an initial characterization of galaxy morphologies, which is currently

one of the most active and promising areas in approaching the problem of

the formation of the first massive galaxies. The depth and area coverage

of our proposed NICMOS observations will also allow a careful study of

the mass function of galaxies at these redshifts. This provides a large

and unbiased sample, selected in terms of stellar mass and unaffected by

cosmic variance, to study the on-going star formation activity as a

function of mass {i.e. integrated star formation} at this very important

epoch.

 

NIC2 11135

 

Extreme Makeovers: Tracing the Transformation of Massive Galaxies at

z~2.5

 

To obtain a full spectroscopic census of the universe at z~2.5 we have

conducted a near-infrared spectroscopic survey for K-selected galaxies.

We found that, in contrast to the local universe, massive high-redshift

galaxies span a wide range of properties, varying from (dusty) star

burst to "red and dead" galaxies. This may imply that massive galaxies

transform from star-forming to quiescent galaxies in the targeted

redshift range. To understand whether the 9 quiescent galaxies in our

sample are the progenitors of local elliptical, we are observing them in

the current cycle with NIC2. For cycle 16 we propose to complete our

sample of massive z~2.5 galaxies and image the remaining 10 galaxies,

which all have emission lines. Based on emission-line diagnostics, 6 of

these galaxies are identified as star-forming objects and 4 harbor an

active galactic nucleus. The goals are to 1) determine whether star

formation in massive z~2.5 galaxies takes place in disks or is triggered

by merger activity, 2) derive the contribution of AGNs to the rest-frame

optical emission, and 3) test whether the morphologies are consistent

with the idea that the star-forming galaxies, AGNs, and quiescent

galaxies represent subsequent phases of an evolutionary sequence. The

combination of both programs will provide the first morphological study

of a spectroscopically confirmed massive galaxy sample at z~2.5.

 

NIC2 11197

 

Sweeping Away the Dust: Reliable Dark Energy with an Infrared Hubble

Diagram

 

We propose building a high-z Hubble Diagram using type Ia supernovae

observed in the infrared rest-frame J-band. The infrared has a number of

exceptional properties. The effect of dust extinction is minimal,

reducing a major systematic that may be biasing dark energy

measurements. Also, recent work indicates that type Ia supernovae are

true standard candles in the infrared meaning that our Hubble diagram

will be resistant to possible evolution in the Phillip's relation over

cosmic time. High signal-to-noise measurements of 16 type Ia events at

z~0.4 will be compared with an independent optical Hubble diagram from

the ESSENCE project to test for a shift in the derived dark energy

equation of state due to a systematic bias. In Cycle 15 we obtained

NICMOS photometry of 8 ESSENCE supernovae and are awaiting template

observations to place them on the IR Hubble diagram. Here we request

another 8 supernovae be studied in the final season of the ESSENCE

search. Because of the bright sky background, H-band photometry of z~0.4

supernovae is not feasible from the ground. Only the superb image

quality and dark infrared sky seen by HST makes this test possible. This

experiment may also lead to a better, more reliable way of mapping the

expansion history of the universe with the Joint Dark Energy Mission.

 

NIC2/WFPC2 11142

 

Revealing the Physical Nature of Infrared Luminous Galaxies at 0.3<z<2.7

Using HST and Spitzer

 

We aim to determine physical properties of IR luminous galaxies at

0.3<z<2.7 by requesting coordinated HST/NIC2 and MIPS 70um observations

of a unique, 24um flux-limited sample with complete Spitzer mid-IR

spectroscopy. The 150 sources investigated in this program have S{24um}

> 0.8mJy and their mid-IR spectra have already provided the majority

targets with spectroscopic redshifts {0.3<z<2.7}. The proposed

150~orbits of NIC2 and 66~hours of MIPS 70um will provide the physical

measurements of the light distribution at the rest-frame ~8000A and

better estimates of the bolometric luminosity. Combining these

parameters together with the rich suite of spectral diagnostics from the

mid-IR spectra, we will {1} measure how common mergers are among LIRGs

and ULIRGs at 0.3<z<2.7, and establish if major mergers are the drivers

of z>1 ULIRGs, as in the local Universe. {2} study the co-evolution of

star formation and blackhole accretion by investigating the relations

between the fraction of starburst/AGN measured from mid-IR spectra vs.

HST morphologies, L{bol} and z. {3} obtain the current best estimates of

the far-IR emission, thus L{bol} for this sample, and establish if the

relative contribution of mid-to-far IR dust emission is correlated with

morphology {resolved vs. unresolved}.

 

WFPC2 11079

 

Treasury Imaging of Star Forming Regions in the Local Group:

Complementing the GALEX and NOAO Surveys

 

We propose to use WFPC2 to image the most interesting star-forming

regions in the Local Group galaxies, to resolve their young stellar

populations. We will use a set of filters including F170W, which is

critical to detect and characterize the most massive stars, to whose hot

temperatures colors at longer wavelengths are not sensitive. WFPC2's

field of view ideally matches the typical size of the star-forming

regions, and its spatial resolution allows us to measure individual

stars, given the proximity of these galaxies. The resulting H-R diagrams

will enable studies of star- formation properties in these regions,

which cover largely differing metallicities {a factor of 17, compared to

the factor of 4 explored so far} and characteristics. The results will

further our understanding of the star-formation process, of the

interplay between massive stars and environment, the properties of dust,

and will provide the key to interpret integrated measurements of

star-formation indicators {UV, IR, Halpha} available for several

hundreds more distant galaxies. Our recent deep surveys of these

galaxies with GALEX {FUV, NUV} and ground-based imaging {UBVRI, Halpha,

[OIII] and [SII]} provided the identification of the most relevant SF

sites. In addition to our scientific analysis, we will provide catalogs

of HST photometry in 6 bands, matched corollary ground-based data, and

UV, Halpha and IR integrated measurements of the associations, for

comparison of integrated star-formation indices to the resolved

populations. We envisage an EPO component.

 

WFPC2 11122

 

Expanding PNe: Distances and Hydro Models

 

We propose to obtain repeat narrowband images of a sample of eighteen

planetary nebulae {PNe} which have HST/WFPC2 archival data spanning time

baselines of a decade. All of these targets have previous high

signal-to-noise WFPC2/PC observations and are sufficiently nearby to

have readily detectable expansion signatures after a few years. Our main

scientific objectives are {a} to determine precise distances to these

PNe based on their angular expansions, {b} to test detailed and highly

successful hydrodynamic models that predict nebular morphologies and

expansions for subsamples of round/elliptical and axisymmetric PNe, and

{c} to monitor the proper motions of nebular microstructures in an

effort to learn more about their physical nature and formation

mechanisms. The proposed observations will result in high-precision

distances to a healthy subsample of PNe, and from this their expansion

ages, luminosities, CSPN properties, and masses of their ionized cores.

With good distances and our hydro models, we will be able to determine

fundamental parameters {such as nebular and central star masses,

luminosity, age}. The same images allow us to monitor the changing

overall ionization state and to search for the surprisingly

non-homologous growth patterns to bright elliptical PNe of the same sort

seen by Balick & Hajian {2004} in NGC 6543. Non-uniform growth is a sure

sign of active pressure imbalances within the nebula that require

careful hydro models to understand.

 

WFPC2 11203

 

A Search for Circumstellar Disks and Planetary-Mass Companions around

Brown Dwarfs in Taurus

 

During a 1-orbit program in Cycle 14, we used

WFPC2 to obtain the first direct image of a circumstellar disk around a

brown dwarf. These data have provided fundamental new constraints on the

formation process of brown dwarfs and the properties of their disks. To

search for additional direct detections of disks around brown dwarfs and

to search for planetary-mass companions to these objects, we propose a

WFPC2 survey of 32 brown dwarfs in the Taurus star-forming region.

 

WFPC2 11796

 

WFPC2 Cycle 16 Decontaminations and Associated Observations

 

This proposal is for the WFPC2 decons. Also included are instrument

monitors tied to decons: photometric stability check, focus monitor,

pre- and post-decon internals (bias, intflats, kspots, & darks), UV

throughput check, VISFLAT sweep, and internal UV flat check.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                       SCHEDULED      SUCCESSFUL

FGS GSacq               12                 12              

FGS REacq               03                 03              

OBAD with Maneuver 30                 30           

 

SIGNIFICANT EVENTS: (None)