HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT       #4687

 

PERIOD COVERED: 5am September 2 - 5am September 3, 2008 (DOY 246/0900z-247/0900z)

 

OBSERVATIONS SCHEDULED

 

FGS 11212

 

Filling the Period Gap for Massive Binaries

 

The current census of binaries among the massive O-type stars is

seriously incomplete for systems in the period range from years to

millennia because the radial velocity variations are too small and the

angular separations too close for easy detection. Here we propose to

discover binaries in this observational gap through a Faint Guidance

Sensor SNAP survey of relatively bright targets listed in the Galactic O

Star Catalog. Our primary goal is to determine the binary frequency

among those in the cluster/association, field, and runaway groups. The

results will help us assess the role of binaries in massive star

formation and in the processes that lead to the ejection of massive

stars from their natal clusters. The program will also lead to the

identification of new, close binaries that will be targets of long term

spectroscopic and high angular resolution observations to determine

their masses and distances. The results will also be important for the

interpretation of the spectra of suspected and newly identified binary

and multiple systems.

 

NIC1/NIC2/NIC3 11820

 

NICMOS Post-SAA Calibration - CR Persistence Part 7

 

Internals for CR persistence

 

NIC2 11548

 

NICMOS Imaging of Protostars in the Orion A Cloud: The Role of

Environment in Star Formation

 

We propose NICMOS observations of a sample of 252 protostars identified

in the Orion A cloud with the Spitzer Space Telescope. These

observations will image the scattered light escaping the protostellar

envelopes, providing information on the shapes of outflow cavities, the

inclinations of the protostars, and the overall morphologies of the

envelopes. In addition, we ask for Spitzer time to obtain 55-95 micron

spectra of 75 of the protostars. Combining these new data with existing

3.6 to 70 micron photometry and forthcoming 5-40 micron spectra measured

with the Spitzer Space Telescope, we will determine the physical

properties of the protostars such as envelope density, luminosity,

infall rate, and outflow cavity opening angle. By examining how these

properties vary with stellar density (i.e. clusters vs groups vs

isolation) and the properties of the surrounding molecular cloud; we can

directly measure how the surrounding environment influences protostellar

evolution, and consequently, the formation of stars and planetary

systems. Ultimately, this data will guide the development of a theory of

protostellar evolution.

 

WFPC2 11156

 

Monitoring Active Atmospheres on Uranus and Neptune

 

We propose Snapshot observations of Uranus and Neptune to monitor

changes in their atmospheres on time scales of weeks and months. Uranus

equinox is only months away, in December 2007. Hubble Space Telescope

observations during the past several years {Hammel et al. 2005, Icarus

175, 284 and references therein} have revealed strongly wavelength-

dependent latitudinal structure, the presence of numerous

visible-wavelength cloud features in the northern hemisphere, at least

one very long-lived discrete cloud in the southern hemisphere, and in

2006 the first dark spot ever seen on Uranus. Long-term ground-based

observations {Lockwood and Jerzekiewicz, 2006, Icarus 180, 442; Hammel

and Lockwood 2007, Icarus 186, 291} reveal seasonal brightness changes

whose origins are not well understood. Recent near- IR images of Neptune

obtained using adaptive optics on the Keck Telescope, together with HST

observations {Sromovsky et al. 2003, Icarus 163, 256 and references

therein} which include previous Snapshot programs {GO 8634, 10170,

10534} show a general increase in activity at south temperate latitudes

until 2004, when Neptune returned to a rather Voyager-like appearance.

Further Snapshot observations of these two dynamic planets will

elucidate the nature of long-term changes in their zonal atmospheric

bands and clarify the processes of formation, evolution, and dissipation

of discrete albedo features.

 

WFPC2 11201

 

Systemic and Internal motions of the Magellanic Clouds: Third Epoch

Images

 

In Cycles 11 and 13 we obtained two epochs of ACS/HRC data for fields in

the Magellanic Clouds centered on background quasars. We used these data

to determine the proper motions of the LMC and SMC to better than 5% and

15% respectively. These are by far the best determinations of the proper

motions of these two galaxies. The results have a number of unexpected

implications for the Milky Way-LMC-SMC system. The implied

three-dimensional velocities are larger than previously believed, and

are not much less than the escape velocity in a standard 10^12 solar

mass Milky Way dark halo. Orbit calculations suggest the Clouds may not

be bound to the Milky Way or may just be on their first passage, both of

which would be unexpected in view of traditional interpretations of the

Magellanic Stream. Alternatively, the Milky Way dark halo may be a

factor of two more massive than previously believed, which would be

surprising in view of other observational constraints. Also, the

relative velocity between the LMC and SMC is larger than expected,

leaving open the possibility that the Clouds may not be bound to each

other. To further verify and refine our results we now request an epoch

of WFPC2/PC data for the fields centered on 40 quasars that have at

least one epoch of ACS imaging. We request execution in snapshot mode,

as in our previous programs, to ensure the most efficient use of HST

resources. A third epoch of data of these fields will provide crucial

information to verify that there are no residual systematic effects in

our previous measurements. More importantly, it will increase the time

baseline from 2 to 5 yrs and will increase the number of fields with at

least two epochs of data. This will reduce our uncertainties

correspondingly, so that we can better address whether the Clouds are

indeed bound to each other and to the Milky Way. It will also allow us

to constrain the internal motions of various populations within the

Clouds, and will allow us to determine a distance to the LMC using

rotational parallax.

 

WFPC2 11795

 

WFPC2 Cycle 16 UV Earth Flats

 

Monitor flat field stability. This proposal obtains sequences of earth

streak flats to improve the quality of pipeline flat fields for the

WFPC2 UV filter set. These Earth flats will complement the UV earth flat

data obtained during cycles 8-15.

 

WFPC2 11797

 

Supplemental WFPC2 CYCLE 16 Intflat Linearity Check and Filter Rotation

Anomaly Monitor

 

Supplemental observations to 11029, to cover period from Aug 08 to SM4.

Intflat observations will be taken to provide a linearity check: the

linearity test consists of a series of intflats in F555W, in each gain

and each shutter. A combination of intflats, visflats, and earthflats

will be used to check the repeatability of filter wheel motions.

(Intflat sequences tied to decons, visits 1-18 in prop 10363, have been

moved to the cycle 15 decon proposal 11022 for easier scheduling.)

 

Note: long-exposure WFPC2 intflats must be scheduled during ACS anneals

to prevent stray light from the WFPC2 lamps from contaminating long ACS

external exposures.

 

Note: These are supplemental observations to cover June to SM4 (oct 8

'08) + 6 months.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                       SCHEDULED      SUCCESSFUL

FGS GSacq               11                  11              

FGS REacq               03                  03               

OBAD with Maneuver 28                  28              

 

SIGNIFICANT EVENTS: (None)