HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT      #4757

 

PERIOD COVERED: 5am December 15 - 5am December 16, 2008 (DOY

                           350/1000z-351/1000z)

 

OBSERVATIONS SCHEDULED

 

FGS 11704

 

The Ages of Globular Clusters and the Population II Distance Scale

 

Globular clusters are the oldest objects in the universe whose age can

be accurately determined. The dominant error in globular cluster age

determinations is the uncertain Population II distance scale. We propose

to use FGS 1r to obtain parallaxes with an accuracy of 0.2

milliarcsecond for 9 main sequence stars with [Fe/H] < -1.5. This will

determine the absolute magnitude of these stars with accuracies of 0.04

to 0.06mag. This data will be used to determine the distance to 24

metal-poor globular clusters using main sequence fitting. These

distances (with errors of 0.05 mag) will be used to determine the ages

of globular clusters using the luminosity of the subgiant branch as an

age indicator. This will yield absolute ages with an accuracy 5%, about

a factor of two improvement over current estimates. Coupled with

existing parallaxes for more metal-rich stars, we will be able to

accurately determine the age for globular clusters over a wide range of

metallicities in order to study the early formation history of the Milky

Way and provide an independent estimate of the age of the universe.

 

The Hipparcos database contains only 1 star with [Fe/H] < -1.4 and an

absolute magnitude error less than 0.18 mag which is suitable for use in

main sequence fitting. Previous attempts at main sequence fitting to

metal-poor globular clusters have had to rely on theoretical

calibrations of the color of the main sequence. Our HST parallax program

will remove this source of possible systematic error and yield distances

to metal-poor globular clusters which are significantly more accurate

than possible with the current parallax data. The HST parallax data will

have errors which are 10 times smaller than the current parallax data.

Using the HST parallaxes, we will obtain main sequence fitting distances

to 11 globular clusters which contain over 500 RR Lyrae stars. This will

allow us to calibrate the absolute magnitude of RR Lyrae stars, a

commonly used Population II distance indicator.

 

FGS 11870

 

Calibrating FGS1R's Optical Field Angle Distortion (OFAD), Second Epoch

 

This proposal gathers the data needed to calibrate the optical field

angle distortions in FGS1r to the level of accuracy required for

astrometry science. Selected stars from the galactic cluster M35 are

repeatedly observed in POSITION mode by FGS1r with F583W filter at a

variety of spacecraft pointings and telescope roll angles. Ideally the

observations are to occur at a time when this ecliptic star field is

near the anti-sun direction so that HST's roll angle is unconstrained.

Unfortunately this is not possible under two gyro operations. Therefore,

the observations in this proposal are somewhat very constrained in roll.

However, this test should suffice as an adequate update to the original

FGS1r OFAD that executed in December 2000. For each visit, the desired

telescope pointing is specified by POS TARG and ORIENT special

requirements.

 

FGS 11943

 

Binaries at the Extremes of the H-R Diagram

 

We propose to use HST/Fine Guidance Sensor 1r to survey for binaries

among some of the most massive, least massive, and oldest stars in our

part of the Galaxy. FGS allows us to spatially resolve binary systems

that are too faint for ground-based, speckle or optical long baseline

interferometry, and too close to resolve with AO. We propose a

SNAP-style program of single orbit FGS TRANS mode observations of very

massive stars in the cluster NGC 3603, luminous blue variables, nearby

low mass main sequence stars, cool subdwarf stars, and white dwarfs.

These observations will help us to (1) identify systems suitable for

follow up studies for mass determination, (2) study the role of binaries

in stellar birth and in advanced evolutionary states, (3) explore the

fundamental properties of stars near the main sequence-brown dwarf

boundary, (4) understand the role of binaries for X-ray bright systems,

(5) find binaries among ancient and nearby subdwarf stars, and (6) help

calibrate the white dwarf mass - radius relation.

 

WFPC2 11113

 

Binaries in the Kuiper Belt: Probes of Solar System Formation and

Evolution

 

The discovery of binaries in the Kuiper Belt and related small body

populations is powering a revolutionary step forward in the study of

this remote region. Three quarters of the known binaries in the Kuiper

Belt have been discovered with HST, most by our snapshot surveys. The

statistics derived from this work are beginning to yield surprising and

unexpected results. We have found a strong concentration of binaries

among low-inclination Classicals, a possible size cutoff to binaries

among the Centaurs, an apparent preference for nearly equal mass

binaries, and a strong increase in the number of binaries at small

separations. We propose to continue this successful program in Cycle 16;

we expect to discover at least 13 new binary systems, targeted to

subgroups where these discoveries can have the greatest impact.

 

WFPC2 11289

 

SL2S: The Strong Lensing Legacy Survey

 

Recent systematic surveys of strong galaxy-galaxy lenses {CLASS, SLACS,

GOODS, etc.} are producing spectacular results for galaxy masses roughly

below a transition mass M~10^13 Mo. The observed lens properties and

their evolution up to z~0.2, consistent with numerical simulations, can

be described by isothermal elliptical potentials. In contrast, modeling

of giant arcs in X-ray luminous clusters {halo masses M >~10^13 Mo}

favors NFW mass profiles, suggesting that dark matter halos are not

significantly affected by baryon cooling. Until recently, lensing

surveys were neither deep nor extended enough to probe the intermediate

mass density regime, which is fundamental for understanding the assembly

of structures. The CFHT Legacy Survey now covers 125 square degrees, and

thus offers a large reservoir of strong lenses probing a large range of

mass densities up to z~1. We have extracted a list of 150 strong lenses

using the most recent CFHTLS data release via automated procedures.

Following our first SNAPSHOT proposal in cycle 15, we propose to

continue the Hubble follow-up targeting a larger list of 130 lensing

candidates. These are intermediate mass range candidates {between

galaxies and clusters} that are selected in the redshift range of 0.2-1

with no a priori X-ray selection. The HST resolution is necessary for

confirming the lensing candidates, accurate modeling of the lenses, and

probing the total mass concentration in galaxy groups up to z~1 with the

largest unbiased sample available to date.

 

WFPC2 11944

 

Binaries at the Extremes of the H-R Diagram

 

We propose to use HST/Fine Guidance Sensor 1r to survey for binaries

among some of the most massive, least massive, and oldest stars in our

part of the Galaxy. FGS allows us to spatially resolve binary systems

that are too faint to observe using ground-based, speckle or optical

long baseline interferometry, and too close to resolve with AO. We

propose a SNAP-style program of single orbit FGS TRANS mode observations

of very massive stars in the cluster NGC 3603, luminous blue variables,

nearby low mass main sequence stars, cool subdwarf stars, and white

dwarfs. These observations will help us to (1) identify systems suitable

for followup studies for mass determination, (2) study the role of

binaries in stellar birth and in advanced evolutionary states, (3)

explore the fundamental properties of stars near the main sequence-brown

dwarf boundary, (4) understand the role of binaries for X-ray bright

systems, (5) find binaries among ancient and nearby subdwarf stars, and

(6) help calibrate the white dwarf mass - radius relation.

 

WFPC2/ACS/SBC 11957

 

Hubble Investigation of Asteroid 21 Lutetia in Support of the Rosetta

Mission Flyby

 

The Rosetta mission is gearing up for a flyby encounter with the large,

main belt asteroid 21 Lutetia, with closest approach on 2010 June 10.

The next opposition, on 2008 December 1, is our last opportunity to make

observations in time to affect the planning of the Rosetta program. We

request a total of 5 orbits of Hubble observing time (2 using ACS/SBC

and 3 using WFPC2) to characterize the UV albedo of Lutetia, to search

for any dust debris near the main body, and to perform a deep search for

companions. Even one orbit of Hubble time would provide valuable data

for planning the Rosetta-Alice ultraviolet spectrometer observations,

and 2 orbits are sufficient to characterize the far-UV albedo, but a

5-orbit program provides a richer scientific investigation with

potentially much broader implications, both scientifically and for

Rosetta planning.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST:

18370-0 - Adjust NCS CPL Setpoint to (15 degC)

 

COMPLETED OPS NOTES: (None)

 

                       SCHEDULED      SUCCESSFUL 

FGS GSacq               14                  14                        

FGS REacq               00                  00                 

OBAD with Maneuver 28                  28           

 

SIGNIFICANT EVENTS:

 

Flash Report: Flash: NCS Restart

The Circulator was successfully started at 350/13:45

 

The CPL reservoir setpoint was brought down to 15 deg C during the

evening/overnight period at a rate of 2 deg/hour