HUBBLE SPACE TELESCOPE - Continuing to collect World Class
Science
DAILY REPORT #4811
PERIOD COVERED: 5am March 13 - 5am March 16, 2009 (DOY
072/0900z-075/0900z)
OBSERVATIONS SCHEDULED
WFPC2 11987
The Recent Star Formation History of SINGS Galaxies
The Spitzer Legacy project SINGS provided a unique view of
the current
state of star formation and dust in a sample of galaxies
of all Hubble
types. This multi-wavelength view allowed the team to
create current
star formation diagnostics that are independent of the
dust content and
increased our understanding of the dust in galaxies. Even
so, using the
SINGS data alone we can only make rough estimates of the
recent star
formation history of these galaxies. The lack of U-band
observations
means that it is impossible to estimate the ages of young
clusters. In
addition, the low resolution of the Spitzer and
ground-based
observations means that what appear to be individual
Spitzer sources can
actually be composed of many individual clusters with
varying ages. In
this proposal we plan to address this missing area in
SINGS by obtaining
high-resolution WFPC2 UBVI observations to accurately find
and determine
the ages of the young stellar clusters in a subset of the
SINGS
galaxies. These observations will greatly enhance the
legacy value of
the SINGS observations while also directly answering
questions
pertaining to star formation in galaxies.
WFPC2 11986
Completing HST's Local Volume Legacy
Nearby galaxies offer one of the few laboratories within
which stellar
populations can be tied to multi-wavelength observations.
They are thus
essential for calibrating and interpreting key
astrophysical
observables, such as broad-band luminosities, durations
and energy input
from starbursts, and timescales of UV, H-alpha, and FIR
emission. The
study of stellar populations in nearby galaxies requires
high-resolution
observations with HST, but HST's legacy for this limited
set of galaxies
remains incomplete.
As a first attempt to establish this legacy, The ACS
Nearby Galaxy
Survey Treasury (ANGST) began observations in late 2006.
ANGST was
designed to carry out a uniform multi-color survey of a
volume-limited
sample of ~70 nearby galaxies that could be used for
systematic studies
of resolved stellar populations. The resulting data
provide nuanced
constraints on the processes which govern star formation
and galaxy
evolution, for a well-defined population of galaxies. All
photometry for
the survey has been publicly released.
However, the failure of ACS 4.5 months after ANGST began
taking data led
to a drastic reduction in the planned survey. The loss is
two-fold.
First, the goals of completeness and uniformity were
greatly
compromised, impacting global comparison studies. Second,
the variety of
observed star formation histories was reduced. Given that
we have never
found two galaxies with identical star formation
histories, and fully
sampling the population allows us to catch those few
systems whose star
formation rates and metallicities place the strongest
constraints on key
astrophysical processes.
Here we propose WFPC2 observations of all remaining
galaxies within the
Local Volume (D<3.5Mpc) for which current HST
observations are
insufficient for meaningful stellar population studies. We
will use
these observations for research on the star formation
histories of
individual galaxies and the Local Volume, detailed
calibrations of star
formation rate indicators, and the durations of
starbursts. We will also
make them publicly available through the ANGST archive to
support future
research. The proposed observations will finally complete
a lasting
legacy of HST
WFPC2 11983
An Imaging Survey of Protoplanetary Disks and Brown Dwarfs
in the
Chamaeleon I Region
We propose to carry out a HST/WFPC2 survey of young brown
dwarfs, Class
I and Class II sources in the Chamaelon I region, one of
the
best-studied star-forming regions, in order to investigate
the link
between disk evolution and the formation of
substellar-mass objects. We
will use deep broad-band imaging in the I and z-equivalent
HST bands to
unveil the unknown population of substellar binary
companions, down to a
few Jupiter masses for separations of a few tens of AU. We
will also
perform narrow-band imaging to directly detect accreting
circumstellar
disks and jets around brown dwarfs, Class-I and class-II
objects.
Chamaelon I is nearly coeaval of Orion (~1-2Myr) but at
~1/3 its
distance, allowing 3x higher resolution and 10x more flux
for comparable
objects. Unlike Orion, low-mass objects and protoplanetary
disks in
Chamaeleon I have been extensively studied with Spitzer,
but not yet
with the HST. The Chamaeleon I region is an ideal HST
target, as it lies
in the CVZ of the HST and therefore it is easily
accessible any time of
the year with long orbits.
WFPC2 11975
UV Light from Old Stellar Populations: a Census of UV
Sources in
Galactic Globular Clusters
In spite of the fact that HST has been the only operative
high-resolution eye in the UV-window over the last 18 years,
no
homogeneous UV survey of Galactic globular clusters (GGCs)
has been
performed to date. In order to fill this gap in the
stellar population
studies, we propose a program that exploits the unique
capability of the
WFPC2 and the SBC in the far-/mid- UV for securing deep UV
imaging of 46
GGCs. The proposed observations will allow to study with
unprecedented
accuracy the hottest GGC stars, comprising the extreme
horizontal branch
(HB) stars and their progeny (the so-called AGB-manque',
and Post-early
AGB stars), and "exotic stellar populations"
like the blue straggler
stars and the interacting binaries. The targets have been
selected to
properly sample the GGC metallicity/structural parameter
space, thus to
unveil any possible correlation between the properties of
the hot
stellar populations and the cluster characteristics. In
addition, most
of the targets have extended HB "blue tails",
that can be properly
studied only by means of deep UV observations, especially
in the far-UV
filters like the F160BW, that is not foreseen on the WFC3.
This data
base is complemented with GALEX observations in the
cluster outermost
regions, thus allowing to investigate any possible trend
of the
UV-bright stellar types over the entire radial extension
of the
clusters. Although the hottest GGC stars are just a small
class of
"special" objects, their study has a broad
relevance in the context of
structure formation and chemical evolution in the early
Universe,
bringing precious information on the basic star formation
processes and
the origin of blue light from galaxies. Indeed, the
proposed
observations will provide the community with an
unprecedented data set
suitable for addressing a number of still open
astrophysical questions,
ranging from the main drivers of the HB morphology and the
mass loss
processes, to the origin of the UV upturn in elliptical
galaxies, the
dating of distant systems from integrated light, and the
complex
interplay between stellar evolution and dynamics in dense
stellar
aggregates. In the spirit of constructing a community
resource, we
entirely waive the proprietary period for these
observations.
WFPC2 11972
Investigating the Early Solar System with Distant Comet
Nuclei
We propose 85 orbits of imaging observations with the
WFPC2 to get
nucleus size estimates for 8 well observed dynamically new
and
long-period comets at large distances from the sun when
their activity
levels are low. This will increase the sample of these
nucleus sizes by
nearly 50%, but will more than double the selection of
comets for which
we can run thermal models. Small icy bodies are the best
preserved
remnants of planet formation, and we have recently found
that
observationally constrained thermal models can distinguish
differences
in microphysical properties of comet nuclei. The new HST
data will
enable the first exploration of physical conditions in
different regions
of the early solar nebula.
WFPC2 11944
Binaries at the Extremes of the H-R Diagram
We propose to use HST/Fine Guidance Sensor 1r to survey
for binaries
among some of the most massive, least massive, and oldest
stars in our
part of the Galaxy. FGS allows us to spatially resolve
binary systems
that are too faint to observe using ground-based, speckle
or optical
long baseline interferometry, and too close to resolve
with AO. We
propose a SNAP-style program of single orbit FGS TRANS
mode observations
of very massive stars in the cluster NGC 3603, luminous
blue variables,
nearby low mass main sequence stars, cool subdwarf stars,
and white
dwarfs. These observations will help us to (1) identify
systems suitable
for follow up studies for mass determination, (2) study
the role of
binaries in stellar birth and in advanced evolutionary
states, (3)
explore the fundamental properties of stars near the main
sequence-brown
dwarf boundary, (4) understand the role of binaries for
X-ray bright
systems, (5) find binaries among ancient and nearby
subdwarf stars, and
(6) help calibrate the white dwarf mass - radius relation.
FGS 11704
The Ages of Globular Clusters and the Population II
Distance Scale
Globular clusters are the oldest objects in the universe
whose age can
be accurately determined. The dominant error in globular
cluster age
determinations is the uncertain Population II distance
scale. We propose
to use FGS 1r to obtain parallaxes with an accuracy of 0.2
milliarcsecond for 9 main sequence stars with [Fe/H] <
-1.5. This will
determine the absolute magnitude of these stars with
accuracies of 0.04
to 0.06mag. This data will be used to determine the
distance to 24
metal-poor globular clusters using main sequence fitting.
These
distances (with errors of 0.05 mag) will be used to
determine the ages
of globular clusters using the luminosity of the subgiant
branch as an
age indicator. This will yield absolute ages with an
accuracy 5%, about
a factor of two improvement over current estimates.
Coupled with
existing parallaxes for more metal-rich stars, we will be
able to
accurately determine the age for globular clusters over a
wide range of
metallicities in order to study the early formation
history of the Milky
Way and provide an independent estimate of the age of the
universe.
The Hipparcos database contains only 1 star with [Fe/H]
< -1.4 and an
absolute magnitude error less than 0.18 mag which is
suitable for use in
main sequence fitting. Previous attempts at main sequence
fitting to
metal-poor globular clusters have had to rely on
theoretical
calibrations of the color of the main sequence. Our HST
parallax program
will remove this source of possible systematic error and
yield distances
to metal-poor globular clusters which are significantly
more accurate
than possible with the current parallax data. The HST
parallax data will
have errors which are 10 times smaller than the current
parallax data.
Using the HST parallaxes, we will obtain main sequence
fitting distances
to 11 globular clusters which contain over 500 RR Lyrae
stars. This will
allow us to calibrate the absolute magnitude of RR Lyrae
stars, a
commonly used Population II distance indicator.
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are
preliminary reports
of potential non-nominal performance that will be
investigated.)
HSTARS:
11721 - GSAcq (2,1,1) had failed to Fine Lock Back-up
(2,0,2). The Guide
Star acquisition was scheduled from 14:53:19 - 15:00:43.
Observations possibly affected: WFPC 195 - 196, Proposal ID# 11986.
REAcq (2,1,1) scheduled from 16:27:05 - 16:34:29, resulted in Fine Lock
Back-up (2,0,2).
Observations possibly affected: WFPC 197, Proposal ID# 11986.
11723 - GSAcq (2,1,1) scheduled from 073/19:40:56 -
19:48:20, and REAcq
(2,1,1) scheduled at 21:14:44 - 21:22:08, both resulted in Fine Lock
Back-up (2,0,2).
Observations possibly affected: WFPC 199 - 201, Proposal ID# 11986.
11724 - REACQ (2,1,1) at 073/22:49:56 ended in Fine Lock
Backup on FGS 2 with
QF1STOPF and QSTOP flags set at 22:54:13.
Observations possibly affected: WFPC 202, proposal ID# 11986.
11725 - GSAcq and REAcq (1,2,2) failed due to Search
Radius Limit
Exceeded on FGS-1. GSAcq scheduled 074/20:11:08 - 20:18:26z and REAcq
scheduled 074/21:27:33 - 21:34:51z.
Observations affected: WFPC 217 - 232, Proposal
ID# 11983.
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED
SUCCESSFUL
FGS GSAcq
19
18
FGS
REAcq
20
19
OBAD with Maneuver
78
78
SIGNIFICANT EVENTS: (None)