HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

 

DAILY REPORT       #4842

 

PERIOD COVERED: 5am April 27 - 5am April 28, 2009 (DOY

                           117/0900z-118/0900z)

 

OBSERVATIONS SCHEDULED

 

FGS 11788

 

The Architecture of Exoplanetary Systems

 

Are all planetary systems coplanar? Concordance cosmogony makes that

prediction. It is, however, a prediction of extrasolar planetary system

architecture as yet untested by direct observation for main sequence

stars other than the Sun. To provide such a test, we propose to carry

out FGS astrometric studies on four stars hosting seven companions. Our

understanding of the planet formation process will grow as we match not

only system architecture, but formed planet mass and true distance from

the primary with host star characteristics for a wide variety of host

stars and exoplanet masses.

 

We propose that a series of FGS astrometric observations with

demonstrated 1 millisecond of arc per-observation precision can

establish the degree of coplanarity and component true masses for four

extrasolar systems: HD 202206 (brown dwarf+planet); HD 128311

(planet+planet), HD 160691 = mu Arae (planet+planet), and HD 222404AB =

gamma Cephei (planet+star). In each case the companion is identified as

such by assuming that the minimum mass is the actual mass. For the last

target, a known stellar binary system, the companion orbit is stable

only if coplanar with the AB binary orbit.

 

FGS 11943

 

Binaries at the Extremes of the H-R Diagram

 

We propose to use HST/Fine Guidance Sensor 1r to survey for binaries

among some of the most massive, least massive, and oldest stars in our

part of the Galaxy. FGS allows us to spatially resolve binary systems

that are too faint for ground-based, speckle or optical long baseline

interferometry, and too close to resolve with AO. We propose a

SNAP-style program of single orbit FGS TRANS mode observations of very

massive stars in the cluster NGC 3603, luminous blue variables, nearby

low mass main sequence stars, cool subdwarf stars, and white dwarfs.

These observations will help us to (1) identify systems suitable for

follow up studies for mass determination, (2) study the role of binaries

in stellar birth and in advanced evolutionary states, (3) explore the

fundamental properties of stars near the main sequence-brown dwarf

boundary, (4) understand the role of binaries for X-ray bright systems,

(5) find binaries among ancient and nearby subdwarf stars, and (6) help

calibrate the white dwarf mass - radius relation.

 

WFPC2 11975

 

UV Light from Old Stellar Populations: a Census of UV Sources in

Galactic Globular Clusters

 

In spite of the fact that HST has been the only operative

high-resolution eye in the UV-window over the last 18 years, no

homogeneous UV survey of Galactic globular clusters (GGCs) has been

performed to date. In order to fill this gap in the stellar population

studies, we propose a program that exploits the unique capability of the

WFPC2 and the SBC in the far-/mid- UV for securing deep UV imaging of 46

GGCs. The proposed observations will allow to study with unprecedented

accuracy the hottest GGC stars, comprising the extreme horizontal branch

(HB) stars and their progeny (the so-called AGB-manque', and Post-early

AGB stars), and "exotic stellar populations" like the blue straggler

stars and the interacting binaries. The targets have been selected to

properly sample the GGC metallicity/structural parameter space, thus to

unveil any possible correlation between the properties of the hot

stellar populations and the cluster characteristics. In addition, most

of the targets have extended HB "blue tails", that can be properly

studied only by means of deep UV observations, especially in the far-UV

filters like the F160BW, that is not foreseen on the WFC3. This data

base is complemented with GALEX observations in the cluster outermost

regions, thus allowing to investigate any possible trend of the

UV-bright stellar types over the entire radial extension of the

clusters. Although the hottest GGC stars are just a small class of

"special" objects, their study has a broad relevance in the context of

structure formation and chemical evolution in the early Universe,

bringing precious information on the basic star formation processes and

the origin of blue light from galaxies. Indeed, the proposed

observations will provide the community with an unprecedented data set

suitable for addressing a number of still open astrophysical questions,

ranging from the main drivers of the HB morphology and the mass loss

processes, to the origin of the UV upturn in elliptical galaxies, the

dating of distant systems from integrated light, and the complex

interplay between stellar evolution and dynamics in dense stellar

aggregates. In the spirit of constructing a community resource, we

entirely waive the proprietary period for these observations.

 

WFPC2 11983

 

An Imaging Survey of Protoplanetary Disks and Brown Dwarfs in the

Chamaeleon I Region

 

We propose to carry out a HST/WFPC2 survey of young brown dwarfs, Class

I and Class II sources in the Chamaelon I region, one of the

best-studied star-forming regions, in order to investigate the link

between disk evolution and the formation of substellar-mass objects. We

will use deep broad-band imaging in the I and z-equivalent HST bands to

unveil the unknown population of substellar binary companions, down to a

few Jupiter masses for separations of a few tens of AU. We will also

perform narrow-band imaging to directly detect accreting circumstellar

disks and jets around brown dwarfs, Class-I and class-II objects.

Chamaelon I is nearly coeaval of Orion (~1-2Myr) but at ~1/3 its

distance, allowing 3x higher resolution and 10x more flux for comparable

objects. Unlike Orion, low-mass objects and protoplanetary disks in

Chamaeleon I have been extensively studied with Spitzer, but not yet

with the HST. The Chamaeleon I region is an ideal HST target, as it lies

in the CVZ of the HST and therefore it is easily accessible any time of

the year with long orbits.

 

WFPC2 12000

 

The Natural Coronagraph of R Coronae Borealis

 

We propose HST/WFPC2 imaging to take advantage of a recent unique and

dramatic fading of the unusual variable star R Coronae Borealis. R CrB

has temporarily dropped 9 mag due to formation of a dust cloud above the

photosphere in the line of sight. Since the dust does not block the star

as seen from other directions, it acts as a "natural coronagraph, "

allowing us to explore the nearby circumstellar environment at HST

resolution.

 

R Coronae Borealis (RCB) stars are rare hydrogen-deficient carbon-rich

supergiants. Evolutionary scenarios proposed to account for their origin

include a merger of two white dwarfs (the double-degenerate or DD mode),

or a final helium-shell flash in a single PN central star (FF mode). We

have recently found a large overabundance of oxygen-18 in several RCB

stars, favoring the DD merger scenario; however, the presence of Li in

the atmospheres of four RCB stars, including R CrB itself, favors the FF

scenario. The presence or absence of circumstellar material, and the

morphology of this material if it exists, provide a fossil record of

previous evolutionary stages. In particular, we expect to see evidence

for an old PN shell in the FF stars, but not in DD merger descendants.

 

Our recent Gemini optical images of R CrB tantalizingly suggest

circumstellar material very close to the star, but compromised by

ground-based seeing and relatively low S/N. We propose HST/WFPC2 images

to confirm this material at higher spatial resolution and signal than

attainable from the ground.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                       SCHEDULED      SUCCESSFUL

FGS GSAcq               08                  08

FGS REAcq               06                  06                           

OBAD with Maneuver 26                  26                

 

SIGNIFICANT EVENTS: (None)